A simple new approach to plastic solar cells

January 25, 2018, Osaka University
Fig.1.Current density-voltage characteristics of organic solar cell and X-ray pattern of active layer. Credit: Osaka University

Humankind is in the midst of a massive drive to harness solar energy to power our homes, gadgets, and industry. Plastic solar cells, based on blends of conducting organic polymers, are of interest for making lightweight and cheap solar cells. The problem with these kinds of solar cells is that their solar power efficiencies are very closely related to the way the different types of materials mix and crystalize in thin films. This means complex and careful processing is usually needed to make efficient polymer solar cells.

Now, researchers at Osaka University, in an international collaboration with Max Planck Institute for Polymer Research, have redesigned one of their previously reported polymers to make a new kind of solar cell that needs no extra special treatments. They also managed to keep excellent power conversion efficiency of solar power to electricity, as recently reported in Advanced Energy Materials.

"Conventional organic have now achieved good efficiencies but the polymer films in these devices typically require special processing to ensure correct crystallization. Instead, we have been focusing on amorphous polymer blends to avoid these issues," lead author Yutaka Ie says.

Organic solar cells work based on light energy exciting electrons in a polymer. The excited electrons can then transfer to a soccer ball-shaped fullerene and move to the positive side of the solar cell. The space left by an electron is known as a hole. It too must move through the polymer to the other side of the device to complete the circuit.

The Osaka researchers knew that one of their polymers could not transport holes so effectively. They redesigned the structure by adding an extra component, which improved its hole conductivity, and in turn enhanced the conversion performance.

Coauthor Yoshio Aso says, "Being able to make these cells without having to pay such close attention to the crystal structure of the polymer films could allow us to mass produce these devices by simple printing methods, which should considerably lower costs of the devices and lead to much wider uptake."

Explore further: An unexpected change in polymer structure opens a new avenue in the search for improved solar cell efficiency

More information: Yutaka Ie et al. Enhanced Photovoltaic Performance of Amorphous Donor-Acceptor Copolymers Based on Fluorine-Substituted Benzodioxocyclohexene-Annelated Thiophene, Advanced Energy Materials (2018). DOI: 10.1002/aenm.201702506

Related Stories

New plastic solar cell minimizes loss of photon energy

December 2, 2015

As the world increasingly looks to alternative sources of energy, inexpensive and environmentally friendly polymer-based solar cells have attracted significant attention, but they still do not match the power harvest of their ...

The fluorescent future of solar cells

May 9, 2013

(Phys.org) —For some solar cells, the future may be fluorescent. Scientists at Yale have improved the ability of a promising type of solar cell to absorb light and convert it into electrical power by adding a fluorescent ...

Driving toward more efficient solar cells

July 11, 2016

For solar energy to become a real power player in the energy game, solar cells need to be both inexpensive to manufacture and efficient in terms of energy they collect. That's why researchers are focusing their efforts on ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.