Neutrons reveal hidden secrets of the hepatitis C virus

January 16, 2018, Institut Laue-Langevin
Credit: Synthelis / Illusciencia

The hepatitis C virus (HCV) is a blood born virus that causes liver disease and cancer, with more than 300,000 people dying each year and 71 million people living with a chronic infection worldwide . While antiviral medicines are currently used, there is no vaccination currently available and side effects can results in a wrong diagnosis.

In the search to find novel therapies for HCV, researchers have looked to the p7, which plays a key role in the release of the virus, for answers. However, there is little data available, and the crystallographic structure of the protein has not yet been resolved.

Recent investigations using neutrons have led to the development of a novel method to study the protein's integration and structure within a native biological membrane environment. A collaboration between Synthelis SAS, University Grenoble Alpes, and the Institute Laue-Langevin (ILL) enabled researchers to observe the structure of a functional p7 protein complex from HCV for the first time within a physiologically relevant lipid bilayer, at nanoscale resolution.

To do this, the scientists performed neutron reflectometry (NR) on FIGARO, a time of flight reflectometer at the world's flagship centre for neutron science, ILL in Grenoble, France. Momentum transfer ranges of 0.008> qz> 0.2 Å-1 and minimum reflectivities of R ~ 5x10-7 were measured using wavelengths λ = 2-20 Å, two angles of incidence and a dqz/qz resolution of 10%.

The Nature Scientific Reports study found that the p7 protein from HCV assembles within the into oligomers that take the shape of a funnel. The conical shape indicates a preferred protein orientation, revealing a specific protein insertion mechanism, and helping to outline potential target mechanisms for future drug development.

Neutrons reveal hidden secrets of the hepatitis C virus
Figure 1. The cell-free preparation of supported bilayers containing p7 and NR and EIS measurements (not to scale). For neutron reflectivity, membranes were formed on quartz and an incident neutron beam was transmitted through the substrate and reflected from Credit: Thomas Soranzo (Synthelis SAS, University Grenoble Alpes), Donald K. Martin (University Grenoble Alpes), Jean-Luc Lenormand (University Grenoble Alpes), and Erik B. Watkins (Los Alamos National Laboratory)

As membrane protein dysfunction is also correlated with a wide range of diseases, this advancement in methods to analyse in their native condition, at an atomic scale, also has the potential to help support new therapeutic approaches in other areas, such as for the development of antibodies against HIV.

Erik Watkins, former ILL FIGARO Instrument Scientist, said: "This new approach is a simple and efficient method complementary to other structural and more complex techniques such as NMR and crystallography. This has proved a powerful tool for characterising the protein conformation in its natural environment and one we can look to use for membrane protein discoveries not just in advancements in HCV, but further afield as well."

Bruno Tillier, Managing Director, Synthelis added: "Neutrons have proved a key resource for this project as we needed to analyse the p7 protein structure in a specific environment. Now we can look to take this deep understanding of the virus not only to devices, like biosensors, but also to study the behaviour of membrane proteins in lipid bilayers to other fields."

Donald Martin, Head of the research team SyNaBi and professor at University Grenoble Alpes also said: "These new results augur well for our continued development of novel nanostructured systems and devices. The ongoing fruitful collaboration between physicists, biologists and engineers from these institutions in Grenoble provides the important fundamental understanding of physical and biological processes that underlies the development of such nanostructured systems and devices."

Thomas Soranzo, University Grenoble Alpes and former Synthelis scientist also said: "a major bottleneck in neutron reflectivity analysis of membrane proteins in planar bilayer is the sufficient insertion of polypeptides. This combinatory, new method not only allows significant incorporation of material but also allows specific labelling that could improve membrane protein structure/function studies."

Explore further: New nanoparticle technology to decipher structure and function of membrane proteins

More information: Thomas Soranzo et al. Coupling neutron reflectivity with cell-free protein synthesis to probe membrane protein structure in supported bilayers, Scientific Reports (2017). DOI: 10.1038/s41598-017-03472-8

Related Stories

Carbon nanotubes mimic biology

July 7, 2017

Proteins in lipid membranes are one of the fundamental building blocks of biological functionality. Lawrence Livermore researchers have figured out how to mimic their role using carbon nanotube porins.

Recommended for you

Programming DNA to deliver cancer drugs

March 19, 2018

DNA has an important job—it tells your cells which proteins to make. Now, a research team at the University of Delaware has developed technology to program strands of DNA into switches that turn proteins on and off.

Modified biomaterials self-assemble on temperature cues

March 19, 2018

Biomedical engineers from Duke University have demonstrated a new approach to making self-assembled biomaterials that relies on protein modifications and temperature. The hybrid approach allows researchers to control self-assembly ...

Identifying 'designer' drugs taken by overdose patients

March 19, 2018

Drug overdoses are taking a huge toll on public health, with potent synthetic drugs posing a particular threat. Medical professionals are scrambling to meet the growing demand for emergency room treatment, but they're hampered ...

The Swiss army knife of smoke screens

March 18, 2018

Setting off smoke bombs is more than good fun on the Fourth of July. The military uses smoke grenades in dangerous situations to provide cover for people and tanks on the move. But the smoke arms race is on. Increasingly, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.