The nanoscopic structure that locks up our genes

January 12, 2018, Okinawa Institute of Science and Technology
Housed in the nucleus, chromatin consists of tightly packed DNA and proteins. A form of chromatin, heterochromatin has proven difficult to image due to its flexibility and very small size. Credit: Yoshimasa Takizawa/OIST

For decades, scientists could only speculate about the shape of heterochromatin, a type of chromatin that consists of tightly packed DNA and proteins. Recently, however, researchers from the Okinawa Institute of Science and Technology, Graduate University (OIST) and Waseda University have been able to define its structure thanks to new, high-contrast imaging in cryo-electron microscopy. Their work appears this January in the journal Molecular Cell.

The new research shows that, although tightly packed, heterochromatin is perhaps less dense than previously thought. Made up of nucleosomes—roll-shaped bundles of DNA and protein—the heterochromatin is connected by a velcro-like feature called "Heterochromatin Protein 1 (HP1)." This fundamental feature allows the body to "lock down" genes so they cannot be transcribed.

"Life as we know it relies on these principles," said Matthias Wolf, one of the leading authors of the paper and head of the Molecular Cryo-Electron Microscopy Unit at the Okinawa Institute of Science and Technology, Graduate University (OIST).

"This work is an example of a very fruitful collaboration, which would not have been possible by any of the research groups alone," said Hitoshi Kurumizaka, the leading author of the study at Waseda University. There, along with Shinichi Machida, an assistant professor at Waseda and co-first author on the paper, researchers successfully purified heterochromatin in vitro. Researchers at OIST imaged these samples in glass-like amorphous ice, which contains hundreds of pieces of heterochromatin, under a cryo-electron microscope.

Made up of nucleosomes -- roll-shaped bundles of DNA and protein -- heterochromatin is connected by a velcro-like feature called Heterochromatin Protein 1. Credit: Yoshimasa Takizawa/OIST

Using a computer algorithm to classify individual particles by type, the scientists cut out those particles facing in the same direction. Then, they stacked these digital cutouts atop one another, combining hundreds of images to create a clearer picture. Wolf demonstrated the concept by placing his hands atop each other.

"If everything fits perfectly then the thumbs and all the fingers align," he said, "and you get higher resolution."

Based on these images, Wolf and his colleagues created three-dimensional reconstructions of the heterochromatin. Because of the structure's flexibility, it was difficult to get a precise idea of its shape, said Yoshimasa Takizawa, group leader of the unit and co-first author on the paper. Takizawa collected hundreds of thousands of images of individual particles to obtain better resolution.

"We were surprised at how it looked," he said of the 's shape, "but this could be consistent with other functions, like the binding of other proteins to exposed DNA."

In the future, the researchers hope to use their knowledge to understand higher order structures, like entire strings of nucleosomes.

Explore further: A molecular garbage disposal complex has a role in packing the genome

Related Stories

Stem cells know how to open up and unwind

April 28, 2016

Research led by the Babraham Institute with collaborators in the UK, Canada and Japan has revealed a new understanding of how an open genome structure supports the long-term and unrestricted developmental potential in embryonic ...

Researchers find new mechanism for genome regulation

June 21, 2017

The same mechanisms that quickly separate mixtures of oil and water are at play when controlling the organization in an unusual part of our DNA called heterochromatin, according to a new study by researchers at the Department ...

Preventing the spread of repression

August 8, 2013

Scientists at the Friedrich Miescher Institute for Biomedical Research have identified a novel and unexpected regulatory activity of RNA at the edge of inactive chromosomal regions. In their publication in Nature Structural ...

Recommended for you

Study links genes to social behaviors, including autism

October 18, 2018

Those pesky bees that come buzzing around on a muggy summer day are helping researchers reveal the genes responsible for social behaviors. A new study published this week found that the social lives of sweat bees—named ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.