A whole-body approach to understanding chemosensory cells

December 12, 2017, Tokyo Institute of Technology
A whole-body approach to understanding chemosensory cells
Immunostaining of Trpm5 and choline acetyltransferase (ChAT) on coronal sections of the trachea of wild-type and Skn-1a-deficient mice. The key point is that compared to the wild-type, no signals for Trpm5 and ChAT were observed in the Skn-1a-deficient mice. Thus, Skn-1a is essential for the functional differentiation of Trpm5-positive tracheal brush cells. Credit: Junji Hirota

Growing evidence shows that sensory cells which enable us to taste sweetness, bitterness and savoriness (umami) are not limited to the tongue. These so-called Trpm5-expressing chemosensory cells are also found in the respiratory system, digestive tract and other parts of the body.

Although their precise function in areas other than the mouth are not fully known, these are thought to play an important "gatekeeper" role, protecting the body against bacteria and potentially harmful substances.

Now, researchers have found that a protein called Skn-1a behaves as a master regulator for the generation of these across multiple tissues and organs.

"Based on our previous studies, we knew that Skn-1a plays an essential role in generating these cells, for example, in the nose," says Junji Hirota, associate professor at the Center for Biological Resources and Informatics, Tokyo Institute of Technology (Tokyo Tech).

In the new study published in PLOS ONE, the researchers comprehensively analyzed using knockout mice and bio-imaging techniques. "One by one, we found that without Skn-1a, the sensory cells were not generated," says Hirota. "All of our results indicated that Skn-1a is a master regulator for the generation of these cells throughout the body."

The study arose from a collaboration between two teams—one led by Hirota, a specialist in olfactory systems, and the other by Ichiro Matsumoto, an expert on taste receptors at the Monell Chemical Senses Center in Philadelphia.

Hirota says: "Our collaboration is very fruitful—by working together, we can extend our knowledge beyond the nose and tongue to the whole body." Following Matsumoto's original discovery of Skn-1a, published in Nature Neuroscience in 2011, the two teams found that Skn-1a is vital for generating chemosensory cells in the nasal respiratory epithelium (in 2013) and the main olfactory epithelium (in 2014).

The latest study goes further by revealing that Skn-1a controls the generation of chemosensory cells in the trachea (see Figure 1), auditory tube, urethra, thymus, pancreatic duct, stomach, and large intestine.

Many questions remain about why these cells are found in such a wide range of organs.

"For example, in the trachea, we think there may be at least two or three types of chemosensory cells," Hirota says. "We're interested in their characterization—this would contribute to fundamental knowledge of biological systems."

The thymus is particularly intriguing, says Hirota, as it is different to the respiratory and digestive systems, and could lead to new research directions in immunology.

In the urethra, chemosensory cells may help protect the body against infections, for example by sending signals to release more urine, thus ridding the of potentially dangerous bacteria or toxins.

"If we can identify the receptor types expressed by these chemosensory cells, we can enhance our understanding of how they detect hazardous compounds," Hirota says. "Then, by studying which ligands or substrates bind to these receptors, it may be possible to identify new candidate drugs in future."

Explore further: Lineage tracing in the gut

More information: Junpei Yamashita et al, Skn-1a/Pou2f3 functions as a master regulator to generate Trpm5-expressing chemosensory cells in mice, PLOS ONE (2017). DOI: 10.1371/journal.pone.0189340

Related Stories

Lineage tracing in the gut

December 1, 2017

Scientists are finding that they can understand organ function (and dysfunction in the case of disease) better if they know where the cells that make up these organs came from.

Mice can smell oxygen

December 2, 2016

The genome of mice harbours more than 1000 odorant receptor genes, which enable them to smell myriad odours in their surroundings. Researchers at the Max Planck Research Unit for Neurogenetics in Frankfurt, the University ...

Irritating smells alert special cells, study finds

March 4, 2008

If you cook, you know. Chop an onion and you risk crying over your cutting board as a burning sensation overwhelms your eyes and nose. Scientists do not know why certain chemical odors, like onion, ammonia and paint thinner, ...

Bitter or sweet? How taste cells decide what they want to be

June 21, 2017

Ever burn your tongue so badly that you were unable to taste your food for a few days? Luckily, a unique feature of taste cells is that they continually regenerate every 10 to 14 days. Now, a new study from the Monell Center ...

Recommended for you

Predators learn to identify prey from other species

March 21, 2018

Wolves purportedly raised Romulus and Remus, who went on to rule Rome. Is there good scientific evidence for learning across species? Researchers at the Smithsonian Tropical Research Institute (STRI) in Panama wanted to know ...

Insects could help us find new yeasts for big business

March 21, 2018

Yeasts are tiny fungi - but they play key roles in producing everything from beer and cheese to industrial chemicals and biofuels. And now scientists are proposing a new approach that could help these industries find new ...

Promiscuity may have accelerated animal domestication

March 21, 2018

Domestication of wild animals may have accelerated as promiscuity increased among the high density populations drawn to life near humans, according to a new paper by University of Liverpool researchers.

Monkeys use tools to crack nuts, shuck oysters

March 21, 2018

Wild macaque monkeys have learned to use tools to crack open nuts and even shuck oysters, researchers said Wednesday, identifying a rare skill-set long thought to be the exclusive party trick of humans and chimps.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.