Selective photothermal therapy with supramolecular radical anions generated in situ

December 7, 2017
Selective photothermal therapy with supramolecular radical anions generated in situ
Credit: Wiley

A new photothermal treatment could help to overcome antibiotic resistance. In this method, an agent transforms near-infrared light into local heating, which kills the pathogens. However, this "transformer" must first be activated, as explained by Chinese scientists in the journal Angewandte Chemie. In this case the target bacteria do this themselves. Other types of bacteria do not switch the agent on and remain unharmed.

The excessive and improper use of antibiotics has led to a sharp increase in highly dangerous, . Photothermal treatments are an interesting new approach for overcoming resistance. They involve increasing the temperature locally through exposure to light, causing the proteins in the microbes to denature and killing them. This requires substances that can efficiently transform the light into heat. Previous photothermal transformers bound non-specifically to the bacteria through electrostatic interactions. This does not allow for the selective inhibition of specific bacteria, which is desirable because the majority of the bacteria in our bodies are harmless or even necessary, like some gut bacteria.

Scientists led by Jiang-Fei Xu and Xi Zhang at Tsinghua University and the Chinese Academy of Sciences (Beijing, China), have now developed a photothermal agent that is only activated when it is "switched on" by the bacteria. Only certain bacteria, known as facultative anaerobic bacteria, can do this.

The new agent is a complex consisting of three molecules: a perylene diimide derivative as the rod-shaped center piece with both of its ends located inside the cavities of pumpkin-shaped macrocycles (cucurbituril). The "pumpkins" prevent the rods from non-specifically inserting into the membranes of bacteria and at the same time preventing the rods to aggregate into stacks.

Certain reagents can reduce perylene diimides to radical anions. Interestingly, facultative anaerobic bacteria like Escherichia coli can also do this. The reduction changes the optical properties of the complex: The radical anion can absorb near infrared and releases the energy as heat. The area around the E.coli gets very warm, killing them off.

In contrast, aerobic bacteria like Bacillus subtilis do not overheat, because they do not switch on the transformer. The researchers believe that hydrogenases, enzymatic proton transporters are responsible for the reduction and thus the "switching". These are only found in large numbers in the membranes of anaerobic and facultative anaerobic . It may be possible to use these concepts to develop treatments that regulate the balance of microbes, such as , as well.

Explore further: New mechanisms discovered that bacteria use to protect themselves from antibiotics

More information: Yuchong Yang et al. Supramolecular Radical Anions Triggered by Bacteria In Situ for Selective Photothermal Therapy, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201708971

Related Stories

Antibiotic resistance driven by intragenomic co-evolution

July 25, 2017

Scientists have discovered bacteria are able to "fine-tune" their resistance to antibiotics – raising the possibility of some superbugs being resistant to drugs which they have never even been in contact with.

New mechanism to fight multi-resistant bacteria revealed

April 19, 2017

In recent years, scientists, clinicians and pharmaceutical companies have struggled to find new antibiotics or alternative strategies against multi-drug resistant bacteria that represent a serious public health problem. In ...

Fighting bacteria with a new genre of antibodies

April 24, 2013

In an advance toward coping with bacteria that shrug off existing antibiotics and sterilization methods, scientists are reporting development of a new family of selective antimicrobial agents that do not rely on traditional ...

Conducting shell for bacteria

June 27, 2017

Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes. A weak point is the dissatisfactory power ...

Recommended for you

Life's building blocks observed in spacelike environment

December 12, 2017

Where do the molecules required for life originate? It may be that small organic molecules first appeared on earth and were later combined into larger molecules, such as proteins and carbohydrates. But a second possibility ...

Hot vibrating gases under the electron spotlight

December 12, 2017

Natural gas is used in refineries as the basis for products like acetylene. The efficiency of gaseous reactions depends on the dynamics of the molecules—their rotation, vibration and translation (directional movement). ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.