Study sheds new light on how animals and plants respond to changes in the environment

December 5, 2017 by Shemina Davis, University of Sheffield
Water flea. Credit: University of Sheffield

Scientists at the University of Sheffield have discovered that living creatures' responsiveness to changes in the environment can evolve and depends on the conditions they experienced in their past.

The study, published in Nature Ecology and Evolution, is the first to show that the ability of a living creature to change its characteristics in response to changes in its environment, can itself evolve. Such in how organisms develop has fascinated scientists for generations.

This flexibility has emerged as a crucial factor in the study of how animals and plants respond to natural and man-made changes to their environment, which include predators, disease and changes in temperature.

The University of Sheffield study, led by Dr Andrew Beckerman from Sheffield's Department of Animal and Plant Sciences, in collaboration with researchers from across Europe, investigated changes to the characteristics of water fleas.

Water fleas are an iconic example of how the flexibility of a living creature's ability to develop in response to changes in their can evolve. They can grow helmets or spikes on their necks in response to smells emitted by their predators, which signal a risk of mortality.

Water fleas can reproduce without sex, giving birth to genetically identical offspring, which allowed the researchers to look at how genetically identical individuals respond to different predators.

Furthermore, water fleas can smell their predators, and this smell triggers changes in development at very early ages that results in helmets and spikes forming on their heads, altered timing of size at which they reproduce and the number of offspring.

The international research team examined a of water fleas exposed to a midge and other populations that were exposed to fish and midge predators.

Using novel methods to examine simultaneously the flexibility in multiple traits, they found repeatedly that the flexibility of populations exposed only to midge was different than populations exposed to both fish and midge. Living with two predators affected the evolution of the flexibility in a manner very different from living with one. The history of exposure to different predators changed how the fleas were able to be flexible.

Explore further: Water fleas genetically adapt to climate change

More information: Julia Reger et al. Predation drives local adaptation of phenotypic plasticity, Nature Ecology & Evolution (2017). DOI: 10.1038/s41559-017-0373-6

Related Stories

Water fleas genetically adapt to climate change

May 11, 2015

The water flea has genetically adapted to climate change. Biologists from KU Leuven, Belgium, compared 'resurrected' water fleas—hatched from 40-year-old eggs—with more recent specimens. The project was coordinated by ...

Transforming water fleas prepare for battle

July 6, 2016

Water fleas can thwart their enemies by growing defensive structures such as helmets and spines. What's more, this predator-induced 'arming' process is not a one-size-fits-all approach - they can even tailor their defensive ...

Study of the evolution of the micro-crustacean group Cladocera

December 16, 2016

Scientists of the Senckenberg Institute have studied the evolutionary history of the so-called "water fleas." These tiny crustaceans from the order Cladocera form the basis of the trophic pyramid and therefore play an important ...

Study shows embryos can learn

December 10, 2014

Pond snails are able to sense chemicals released by their predators whilst they are still embryos in the egg and alter their behaviour accordingly, according to new research.

Recommended for you

Discovery of a simple mechanism for color detection

October 15, 2018

Color vision, consisting of ocular color detection, is achieved with complicated neural mechanisms in the eyes. Researchers from Osaka City University in Japan have found color detection with a simple mechanism in the fish ...

How beetle larvae thrive on carrion

October 15, 2018

The burying beetle Nicrophorus vespilloides buries the cadavers of small animals in soil to use them as a food source for its offspring. However, the carcass and thus the breeding site are highly susceptible to microbial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.