Team discovers new mechanisms for DNA stability

November 17, 2017, University of Seville
The researcher Andres Aguilera. Credit: University of Seville

Researchers from the University of Seville at the Andalusian Centre for Molecular Biology and Regenerative Medicine have discovered that in eukaryotic cells, the proximity of the genes to the pores in the nuclear membrane contributes to maintaining the integrity of the genome. This is due to the fact that the anchoring of DNA to the pore during transcription avoids the formation of DNA-RNA hybrids, which are a natural source of DNA breaks and genome instability.

The proximity and anchoring of the genes to the nuclear pores during transcription has been known for more than a decade. It enables the nascent RNA to be carried out of the nucleus. "In this work, we have seen that if DNA is located in the interior of the nucleus and removed from the , the formation of DNA-RNA hybrids are more likely. That is to say, the anchoring of DNA to the pore contributes to preserving the integrity of the genome by avoiding the formation of these structures," explains Professor Andrés Aguilera.

The work was carried out on a model eukaryotic organism, the yeast Saccharomyces. The researchers counted new genes involved in the prevention of DNA-RNA hybrids, which cause . From one collection of mutations of protein-coding genes, they identified the nuclear components Mlp1 and Mlp2 of the macrocomplex that form the nuclear pores, preserved in all eukaryotes, including humans. The molecular analysis of the null mutations (those that are totally non-functioning) of these revealed that DNA-RNA hybrids accumulated and increased the genetic instability that they caused. However, when the DNA in these mutations was again returned to the nuclear pore by means of a genetically engineered artificial anchoring system, the hybrids and the instability were suppressed.

"It was particularly relevant that this system of artificial anchoring was also tested in THO-complex mutations, which also see increased DNA-RNA hybrids and the associated genetic instability, and we successfully managed to prevent the formation of DNA-RNA hybrids and instability," Aguilera said.

The accumulation of RNA-DNA hybrids in the genome is a source of in all organisms and has been associated with neurodegenerative diseases and cancer. The results of the research open new possibilities for understanding the cellular mechanisms responsible for genome and for being able to explore new therapeutic approaches.

Explore further: Experts indicate new elements responsible for instability in chromosomes

More information: Francisco García-Benítez et al, Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1707845114

Related Stories

How shuttling proteins operate nuclear pores

September 4, 2017

Nuclear pore complexes are tiny channels where the exchange of substances between the cell nucleus and the cytoplasm takes place. Scientists at the University of Basel report on startling new research that might overturn ...

Chromosome mechanics guide nuclear assembly

August 28, 2017

Every one of our cells stores its genome within the nucleus – the quintessential subcellular structure that distinguishes eukaryotic cells from bacteria. When animal cells divide, they disassemble their nucleus, releasing ...

Histone 1, the guardian of genome stability

August 18, 2017

Scientists headed by Ferran Azorín at the Institute for Research in Biomedicine (IRB Barcelona) have discovered why histone 1 is a major protection factor against genomic instability and a vital protein. Their study of the ...

Recommended for you

Geneticists solve long-standing finch beak mystery

November 19, 2018

Bridgett vonHoldt is best known for her work with dogs and wolves, so she was surprised when a bird biologist pulled her aside and said, "I really think you can help me solve this problem." So she turned to a mystery he'd ...

Space-inspired speed breeding for crop improvement

November 16, 2018

Technology first used by NASA to grow plants extra-terrestrially is fast tracking improvements in a range of crops. Scientists at John Innes Centre and the University of Queensland have improved the technique, known as speed ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.