Uncertainty surrounds US livestock methane emission estimates

November 30, 2017
The researchers estimated methane emissions using a "gridded" approach, dividing the US into 0.1- by 0.1-degree GIS units, which created cells from 31 square miles in the northern United States to 42 square miles in the southern part of the country. The study pegged total U.S. livestock methane emissions of 19.6 billion pounds per year. This map shows where they are coming from. Credit: Penn State

A new study of methane emissions from livestock in the United States—led by a researcher in Penn State's College of Agricultural Sciences—has challenged previous top-down estimates.

The research was conducted because serious discrepancies exist between top-down estimates that suggest the U.S. Environmental Protection Agency is underestimating agricultural emissions by up to 90 percent, and bottom-up estimates accepted by the federal government showing lower emissions.

Top-down emissions estimates involve monitoring atmospheric methane concentrations by satellites or from air samples collected at high altitude by planes, and using models to estimate the sources of emissions. Bottom-up estimates take into account populations and animal emission factors.

In their detailed analysis, researchers used a spatially explicit, bottom-up approach, based on animal inventories and feed-intake-based emission factors, to estimate enteric methane emissions for and methane emissions for cattle, swine and poultry for the contiguous United States.

The researchers estimated methane emissions using a "gridded" approach, dividing the U.S. into 0.1 by 0.1-degree GIS units, which created cells from 31 square miles in the northern United States to 42 square miles in the southern part of the country.

"This level of detail enabled us to more accurately assess agricultural methane emissions based on activities involving livestock," explained lead researcher Alex Hristov, professor of dairy nutrition, who is a member of the current National Academy of Sciences Anthropogenic Methane Committee.

"We must have more specific information about methane emissions that combines local livestock populations and characteristics with distribution of landscape features—and a gridded inventory approach provides that," he said.

According to the EPA, the top three sources of anthropogenic methane in the United States are the combined energy sector—natural gas, petroleum systems and coal mining—which makes up 40 percent of the total; livestock, 36 percent of the total; and landfills, 18 percent of the total.

Methane emissions from livestock operations are the result of microbial fermentation and methanogenesis in the forestomach of ruminants and similar fermentation processes in manure from both ruminant and non-ruminant farm .

Methane is also produced from enteric fermentation in the digestive tract of non-ruminant herbivore species, such as horses, donkeys and mules, as a result of fermentation processes in their hindgut. However, "hindgut fermenters" do not produce nearly as much methane per unit of fermented feed as ruminants, so enteric or manure emissions from equine species were not included in this analysis. Neither were emissions from small ruminants such as sheep and goats, which are negligible in the U.S.

County-level, annual enteric methane emissions for all states were estimated for cattle only. A total of 3,063 counties in the contiguous U.S. were included in the cattle methane emission database.

Cattle inventories by county were obtained from the 2012 Census of Agriculture, which is the last census data currently available. Body weight data for cattle was derived from EPA records and dry matter feed intake was estimated based on National Research Council prediction equations for the various categories of cattle. Methane yield factors were calculated for each cattle category.

Overall, the research, which was published this month in Environmental Science and Technology, yielded total U.S. livestock methane emissions of 19.6 billion pounds per year. However, uncertainty surrounding that total is high, researchers acknowledged.

Compared with enteric methane, predicting methane emissions from manure is a more complex process and carries a larger uncertainty in the estimates, the researchers pointed out. Manure composition, type of storage facilities and manure retention time, and environment—particularly temperature—are among the factors that affect methane emissions from manure.

There is great uncertainty in both enteric and manure methane emissions from livestock, Hristov conceded. He said that research around the world has shown that variability in enteric methane emissions largely can be explained with variability in feed dry-matter intake. Nutrient composition of the feed is also important but has a lesser impact on enteric methane production.

"If methane emissions from livestock in this country really are twice as high as what is estimated now—and we don't believe they are—that would put a big target on agriculture to take measures to cut these emissions," said Hristov. "Having an accurate and spatially explicit assessment of from livestock is critical for reconciliation of top-down and bottom-up approaches, and it's the starting point in any mitigation effort."

"Our analysis showed that the EPA's estimates are close to reality, but there is a discrepancy in the spatial distribution of emissions. And, our research revealed a great discrepancy with global models such as the EDGAR (Emission Database for Global Atmospheric Research) inventory."

Explore further: Global methane emissions from agriculture larger than reported, according to new estimates

More information: Alexander N. Hristov et al. Discrepancies and Uncertainties in Bottom-up Gridded Inventories of Livestock Methane Emissions for the Contiguous United States, Environmental Science & Technology (2017). DOI: 10.1021/acs.est.7b03332

Abstract
In this analysis we used a spatially explicit, simplified bottom-up approach, based on animal inventories, feed dry matter intake, and feed intake-based emission factors to estimate county-level enteric methane emissions for cattle and manure methane emissions for cattle, swine, and poultry for the contiguous United States. Overall, this analysis yielded total livestock methane emissions (8916 Gg/yr; lower and upper 95% confidence bounds of ±19.3%) for 2012 (last census of agriculture) that are comparable to the current USEPA estimates for 2012 and to estimates from the global gridded Emission Database for Global Atmospheric Research (EDGAR) inventory. However, the spatial distribution of emissions developed in this analysis differed significantly from that of EDGAR and a recent gridded inventory based on USEPA. Combined enteric and manure methane emissions from livestock in Texas and California (highest contributors to the national total) in this study were 36% lesser and 100% greater, respectively, than estimates by EDGAR. The spatial distribution of emissions in gridded inventories (e.g., EDGAR) likely strongly impacts the conclusions of top-down approaches that use them, especially in the source attribution of resulting (posterior) emissions, and hence conclusions from such studies should be interpreted with caution.

Related Stories

Climate: Meat turns up the heat

July 21, 2014

Eating meat contributes to climate change, due to greenhouse gasses emitted by livestock. New research finds that livestock emissions are on the rise and that beef cattle are responsible for far more greenhouse gas emissions ...

Cutting methane emissions from cattle

March 11, 2016

Cattle have bad breath and commonly suffer from severe, chronic flatus generating large amounts of methane, which is a greenhouse gas and a driver of anthropogenic global warming. There is an obvious answer to this problem, ...

Recommended for you

Climate change made Harvey rainfall 15 percent more intense

December 14, 2017

A team of scientists from World Weather Attribution, including researchers from Rice University and other institutions in the United States and Europe, have found that human-caused climate change made the record rainfall ...

East Antarctic Ice Sheet has history of instability

December 13, 2017

The East Antarctic Ice Sheet locks away enough water to raise sea level an estimated 53 meters (174 feet), more than any other ice sheet on the planet. It's also thought to be among the most stable, not gaining or losing ...

Hydraulic fracturing negatively impacts infant health

December 13, 2017

From North Dakota to Ohio to Pennsylvania, hydraulic fracturing, also known as fracking, has transformed small towns into energy powerhouses. While some see the new energy boom as benefiting the local economy and decreasing ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

rrwillsj
not rated yet Nov 30, 2017
You mean to say that government bureaucrats at the behest of congressional toady's for corporate interests have been fiddlin' the books? And suppressing information that would embarrass the politically powerful?

I'm shocked! Shocked, I tell you! That anyone would try and pretend that corruption is not endemic to the Age of the Wall Street Casino.
rustolio
not rated yet Dec 01, 2017

You mean to say that government bureaucrats at the behest of congressional toady's for corporate interests have been fiddlin' the books? And suppressing information that would embarrass the politically powerful?


What are you talking about?

The article says that the EPA estimates are close to accurate, but don't have the accurate spatial distribution. And they also say that the EDGAR estimates are higher than this study's estimate.


"Our analysis showed that the EPA's estimates are close to reality, but there is a discrepancy in the spatial distribution of emissions. And, our research revealed a great discrepancy with global models such as the EDGAR (Emission Database for Global Atmospheric Research) inventory."

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.