Discovery points the way to better and cheaper transparent conductors

November 27, 2017, University of Liverpool
Discovery points the way to better and cheaper transparent conductors
Compensating acceptor fluorine interstitials (light green) dramatically reduce electronic performance of tin dioxide transparent conducting glass coatings doped with fluorine atoms (dark green). Credit: University of Liverpool

Researchers at the University of Liverpool have made a discovery that could improve the conductivity of a type of glass coating which is used on items such as touch screens, solar cells and energy efficient windows.

Coatings are applied to the glass of these items to make them electrically conductive whilst also allowing light through. Fluorine doped tin dioxide is one of the materials used in commercial low cost glass coatings as it is able to  simultaneously allow light through and conduct electrical charge but it turns out that tin dioxide has as yet untapped potential for improved performance.

In a paper published in the journal Advanced Functional Materials, physicists identify the factor that has been limiting the conductivity of doped tin dioxide, which should be highly conductive because fluorine atoms substituted on oxygen lattice sites are each expected to give an additional free electron for conduction.

The scientists report, using a combination of experimental and theoretical data, that for every two fluorine atoms that give an additional free electron, another one occupies a normally unoccupied lattice position in the tin dioxide crystal structure.

Each so-called "interstitial" fluorine atom captures one of the free electrons and thereby becomes negatively charged. This reduces the electron density by half and also results in increased scattering of the remaining . These combine to limit the conductivity of fluorine doped tin dioxide compared with what would otherwise be possible.

PhD student Jack Swallow, from the University's Department of Physics and the Stephenson Institute for Renewable Energy, said: "Identifying the factor that has been limiting the conductivity of fluorine doped tin dioxide is an important discovery and could lead to coatings with improved transparency and up to five times higher , reducing cost and enhancing performance in a myriad of applications from touch screens, LEDs, photovoltaic cells and energy efficient windows."

The researchers now intend to address the challenge of finding alternative novel dopants that avoid these inherent drawbacks.

The research involved physicists from the University and the Surrey Ion Beam Centre in collaboration with computational chemists at University College London and global glass manufacturer, NSG Group and is funded by an Engineering and Physical Sciences Research Council grant and the EPSRC's Centre for Doctoral Training in New and Sustainable Photovoltaics.

Explore further: Chemists unlock the potential of fluoroalkenes

More information: Jack E. N. Swallow et al. Self-Compensation in Transparent Conducting F-Doped SnO2, Advanced Functional Materials (2017). DOI: 10.1002/adfm.201701900

Related Stories

Chemists unlock the potential of fluoroalkenes

November 7, 2017

One of the strongest chemical bonds in organic chemistry is formed between carbon and fluorine, giving unique properties to chemical compounds featuring this group. Pharmaceutical researchers are very interested in carbon-fluorine ...

Reusing waste energy with 2-D electron gas

November 20, 2017

More than 60 percent of the energy produced by fossil fuels is lost as heat. Thermoelectric energy conversion has attracted much attention as a way to convert waste heat from power plants, factories and cars into electricity. ...

Researchers develop highly stable perovskite solar cells

October 25, 2017

A recent study, affiliated with UNIST has presented a highly stable perovskite solar cells (PSCs), using edged-selectively fluorine (F) functionalized graphene nano-platelets (EFGnPs). This breakthrough has gotten much attention ...

Fluorine-containing molecules from cell cultures

September 28, 2017

Natural organic compounds that contain fluorine are rare because living organisms—with a few exceptions—do not produce them. American scientists have now genetically engineered a microbial host for organofluorine metabolism, ...

Recommended for you

Using machine learning to design peptides

December 10, 2018

Scientists and engineers have long been interested in synthesizing peptides—chains of amino acids responsible for conducting many functions within cells—to both mimic nature and to perform new activities. A designed peptide, ...

Biomimetic strategy leads to strong, recyclable rubber

December 10, 2018

Inspired by nature, Chinese scientists have produced a synthetic analogue to vulcanized natural rubber. Their material is just as tough and durable as the original. In the journal Angewandte Chemie, they reveal the secret ...

Custom-made artificial mother-of-pearl

December 10, 2018

Natural mother-of-pearl, such as mussels, is one of the hardest, most stable and stiff natural materials. Researchers have always been fascinated by it. The structure of mother-of-pearl is exquisite under the electron microscope; ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.