New technology illuminates microbes that can't be cultivated in a laboratory

October 9, 2017, US Department of Energy
Scientists used this integrated microfluidic circuit to perform mini-metagenomic microbial cell partitioning and genomic DNA amplification. Credit: Brian Yu

At Stanford University, researchers have used a new microfluidic analysis system to extract 29 novel microbial genomes (the complete set of genetic material) from samples from two Yellowstone National Park hot springs. They extracted the genomes while still preserving single-cell resolution, meaning they knew which cells the genetic material came from. This work was made possible by a new technology that divides the sample to enable accurate analysis of a microbe's genetic material. Specifically, it offers details on genome function and abundance. The work was enabled by the Emerging Technology Opportunity Program, a part of the U.S. Department of Energy Joint Genome Institute (DOE JGI), a DOE Office of Science user facility.

This illuminates microbial "dark matter," genetic information from the majority of the planet's microbial diversity that has not been grown in a lab. These microbes live in locations as diverse as hot springs and deserts, underneath Antarctic ice and in acid mine drainage from Superfund sites. Tools that can determine microbes' genetics and metabolism will have applications in fields ranging from bioenergy to biotechnology to environmental research.

There are more than 50,000 microbial sequences in the DOE JGI's Integrated Microbial Genomes publicly accessible database, and many of them have been uncovered using metagenomic sequencing and single-cell genomics. Despite their utility, these sequencing and genomics techniques have limits: single-cell genome amplifications are time-consuming, often incomplete, and metagenomic sequencing generally works best if the environmental sample is not too complex. In eLife, a team of researchers from Stanford University reports the development of a microfluidics-based, mini-metagenomics approach to mitigate these challenges. The technique starts with reducing the environmental sample's complexity by separating it, using microfluidics, into 96 subsamples each with 5 to 10 cells. Then, the genomes in the cells in each subsample are amplified and libraries are created for sequencing these mini-metagenomes. The smaller subsamples can be held to single-cell resolution for statistical analyses. Co-occurrence patterns from many subsamples can also be used to perform sequence-independent genome binning. The technology was developed through resources provided by the DOE JGI's Emerging Technologies Opportunity Program, which was launched in 2013.

The aim of JGI's Emerging Technologies Opportunity Program is to use these new technologies to tackle energy and environment applications, adding value to the high-throughput sequencing and analysis being done for DOE JGI users. The team validated the technique using a synthetic microbial community, and then applied it to samples from the Bijah and Mound at Yellowstone National Park. Among their findings was that the microbes at Mound Spring had higher potential to produce methane than the microbes from Bijah Spring. They also identified a microbial genome from Bijah Spring that could reduce nitrite to nitrogen. Applying this new to additional sample sites will add to the range of hitherto uncharacterized microbial capabilities with potential DOE mission applicability.

Explore further: Complete genomes from single cells still elusive

More information: Feiqiao Brian Yu et al. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples, eLife (2017). DOI: 10.7554/eLife.26580

Related Stories

Benchmarking computational methods for metagenomes

October 4, 2017

They are everywhere, but invisible to the naked eye. Microbes are the unseen, influential forces behind the regulation of key environmental processes such as the carbon cycle, yet most of them remain unknown. For more than ...

New database of DNA viruses and retroviruses debuts

March 6, 2017

There are more microbes in, on, and around the planet than there are stars in the Milky Way. Microbes affect food production; air quality; natural breakdown of plants, trees and biomass; soil quality for agriculture; and ...

Tracking microbial mat formation in Yellowstone

February 11, 2016

Researchers determined the contributions of different microbes toward the establishment of microbial mat communities in the hot and acidic environments of the Yellowstone Hot Springs.

Recommended for you

Old species learn new tricks... very slowly

August 15, 2018

A quick look at the fossil record shows that no species lasts forever. On average, most species exist for around a million years, although some species persist for much longer. A new study published in Scientific Reports ...

The secret behind cell revival revealed

August 15, 2018

Scientists from the Okinawa Institute of Science and Technology Graduate University (OIST), have identified 85 genes essential for fission yeast cells at rest, under nutritionally limited environmental conditions, to maintain ...

How gene hunting changed the culture of science

August 15, 2018

Years after the end of the Human Genome Project (HGP), which mapped the human genetic blueprint, its contributions to science and scientific culture are still unfolding. Ioannis Pavlidis, Eckhard Pfeiffer Professor of Computational ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.