More efficient separation of methane and CO2

October 18, 2017, KU Leuven
Natural gas or biogas always needs to be purified before use. First, the methane molecules (in black and white) are separated from the CO2 molecules (in red and black) by means of membranes with tiny pores through which only the CO2 can pass. After the purification process, the methane can be used as fuel, for heating, or for the production of chemicals. Credit: KU Leuven - Verbeke

To make natural gas and biogas suitable for use, the methane has to be separated from the CO2. This involves the use of membranes, filters that stop the methane and allow the CO2 to pass through. Researchers at KU Leuven (University of Leuven), Belgium, have developed a new membrane that makes the separation process much more effective.

When extracting or producing biogas, it's all about the methane. But methane is never found in its pure form. Natural gas, for instance, always contains quite a bit of carbon dioxide, sometimes up to 50 percent. To purify the methane—or, in other words, to remove the CO2—industry often uses membranes. These membranes function as molecular sieves that separate the methane and the CO2. The methane can then be used as a source of energy for heating, for the production of chemicals, or as fuel, while the CO2 can be reused as a building block for renewable fuels and chemicals.

Existing membranes still need to be improved for effective CO2 separation, says Professor Ivo Vankelecom from the KU Leuven Faculty of Bioscience Engineering. "An effective membrane only allows the CO2 to pass through, and as much of it as possible. The commercially available membranes come with a trade-off between selectivity and permeability: they are either highly selective or highly permeable. Another important problem is the fact that the membranes plasticise if the contains too much CO2. This makes them less efficient: almost everything can pass through them, so that the separation of methane and CO2 fails."

The best available membranes consist of a polymeric matrix containing a filler, for instance, a metal-organic framework (MOF). This MOF filler has nanoscale pores. The new study has shown that the characteristics of such a membrane improve significantly with a heat treatment above 160 degrees Celsius during the production process. "You get more crosslinks in the polymeric matrix—the net densifies, so to speak, which improves the membrane performance, because it can no longer plasticise. At these temperatures, the structure of the MOF—the filler—changes, and it becomes more selective. Finally, the high-temperature treatment also improves polymer-filler adhesion—the gas mixture can no longer escape through little holes at the filler-polymer interface."

This gives the new membrane the highest selectivity ever reported, while preventing plasticisation when the concentration of CO2 is high. "If you start off with a 50/50 CO2/methane mixture, this membrane gives you 164 times more CO2 than after permeation through the ," Dr Lik Hong Wee explains. "These are the best results ever reported in scientific literature."

Explore further: New, water-based, recyclable membrane filters all types of nanoparticles

More information: Aylin Kertik et al, Highly selective gas separation membrane using in situ amorphised metal–organic frameworks, Energy Environ. Sci. (2017). DOI: 10.1039/C7EE01872J

Related Stories

New membranes help reduce CO2 emission

July 24, 2017

The University of Twente and the German research centre Jülich are collaborating on developing membranes for an efficient separation of gasses, to use for the production of oxygen or hydrogen, for example.

Recommended for you

New fuel cell technology runs on solid carbon

January 22, 2018

Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory ...

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.