Spin current detection in quantum materials unlocks potential for alternative electronics

October 13, 2017 by Sara Shoemaker, Oak Ridge National Laboratory
A new microscopy method developed by an ORNL-led team has four movable probing tips, is sensitive to the spin of moving electrons and produces high-resolution results. Using this approach, they observed the spin behavior of electrons on the surface of a quantum material. Credit: Saban Hus and An-Ping Li/Oak Ridge National Laboratory, U.S. Dept. of Energy

A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics.

Found at the heart of , silicon-based semiconductors rely on the controlled electrical current responsible for powering electronics. These semiconductors can only access the electrons' charge for energy, but electrons do more than carry a charge. They also have known as , which is a feature of quantum materials that, while elusive, can be manipulated to enhance electronic devices.

A team of scientists, led by An-Ping Li at the Department of Energy's Oak Ridge National Laboratory, has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.

"The spin current, namely the total of moving electrons, is a behavior in topological insulators that could not be accounted for until a spin-sensitive method was developed," Li said.

Electronic devices continue to evolve rapidly and require more power packed into smaller components. This prompts the need for less costly, energy-efficient alternatives to charge-based electronics. A topological insulator carries electrical current along its , while deeper within the bulk material, it acts as an insulator. Electrons flowing across the material's surface exhibit uniform spin directions, unlike in a semiconductor where electrons spin in varying directions.

An ORNL-led team successfully detected and measured a voltage created as electrons, exhibiting quirky particle behavior called spin current, moved across the surface of a quantum material. Credit: Saban Hus and An-Ping Li/Oak Ridge National Laboratory, U.S. Dept. of Energy

"Charge-based devices are less energy efficient than spin-based ones," said Li. "For spins to be useful, we need to control both their flow and orientation."

To detect and better understand this quirky particle behavior, the team needed a method sensitive to the spin of moving electrons. Their new microscopy approach was tested on a single crystal of Bi2Te2Se, a material containing bismuth, tellurium and selenium. It measured how much voltage was produced along the material's surface as the flow of electrons moved between specific points while sensing the voltage for each electron's spin.

The new method builds on a four-probe scanning tunneling microscope—an instrument that can pinpoint a material's atomic activity with four movable probing tips—by adding a component to observe the spin behavior of electrons on the material's surface. This approach not only includes spin sensitivity measurements. It also confines the current to a small area on the surface, which helps to keep from escaping beneath the surface, providing high-resolution results.

"We successfully detected a voltage generated by the electron's spin current," said Li, who coauthored a paper published by Physical Review Letters that explains the method. "This work provides clear evidence of the spin current in and opens a new avenue to study other that could ultimately be applied in next-generation electronic devices."

Explore further: Spinning electrons open the door to future hybrid electronics

More information: Saban M. Hus et al, Detection of the Spin-Chemical Potential in Topological Insulators Using Spin-Polarized Four-Probe STM, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.119.137202

Related Stories

Reality check for topological insulators

July 27, 2017

Topological insulators, a class of materials which has been investigated for just over a decade, have been heralded as a new 'wonder material", as has graphene. But so far, topological insulators have not quite lived up to ...

Recommended for you

How a particle may stand still in rotating spacetime

May 25, 2018

When a massive astrophysical object, such as a boson star or black hole, rotates, it can cause the surrounding spacetime to rotate along with it due to the effect of frame dragging. In a new paper, physicists have shown that ...

Scientists discover new magnetic element

May 25, 2018

A new experimental discovery, led by researchers at the University of Minnesota, demonstrates that the chemical element ruthenium (Ru) is the fourth single element to have unique magnetic properties at room temperature. The ...

Long live the doubly charmed particle

May 25, 2018

Finding a new particle is always a nice surprise, but measuring its characteristics is another story and just as important. Less than a year after announcing the discovery of the particle going by the snappy name of Ξcc++ (Xicc++), ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Sonhouse
not rated yet Oct 16, 2017
Now for actual devices!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.