Asymmetric sound absorption lets in the light

October 6, 2017
Asymmetric sound absorption lets in the light
Multiband asymmetric absorptions. (a) and (b) show the photograph of structures for achieving two-band and four-band asymmetric absorptions, respectively. Credit: Long, Cheng and Liu

If you've ever lived in an apartment building or stayed in a hotel room, you are probably familiar with the inconvenience of inadequate sound absorption. Acoustic absorption refers to the absorption of sound energy by a material. Whether it's to improve acoustics or to prevent noisy neighbors, sound absorption has multiple applications in engineering and architecture, which can be improved by asymmetric acoustics.

Many asymmetric absorbers, those that only absorb coming in from one direction, are currently based on a single-port system, where sound enters one side and is absorbed before a rigid wall. In this design, however, light and air are unable to pass through the system. But a combined research effort from Nanjing University and the Chinese Academy of Sciences shows that asymmetric absorption can be realized within a straight transparent waveguide. The waveguide allows light transmission and air flow through the and is described this week in Applied Physics Letters.

Ying Cheng, associate professor of physics at Nanjing University, and his colleagues developed a methodology to induce non-reciprocal absorption and reflectance for both multiband and broadband sound. They discovered that sound was almost completely absorbed, more than 96 percent, when using the multiband absorber in an asymmetric Helmholtz resonance (HR) fashion.

"Therefore, we were curious about whether there are artificial structures with the effect of 'blocking' sound waves which act as the rigid wall, but [are] transparent to light and wind," Cheng said.

Within a tube with both ends open they constructed an asymmetric sound absorber. "[T]he system can almost totally absorb the sound energy impinging on one port, but largely reflects the entering the other port," he said. "In the system, one of [the] Helmholtz resonators (located on branches to the main tube and acting as shunts) functions as an artificial soft wall which can block sound waves as if they were a rigid solid wall."

Asymmetric absorbers use a more complicated method of absorption than, say, porous metameterials that absorb from both directions. Often, nonlinear effects or highly complex structures are required to break reciprocity and allow reflection from one direction.

Here, however, the clever design of the shunted HR pairs takes advantage of natural loss mechanisms to achieve the effect. These systems could find a number of applications in architectural design, specifically in the design of acoustically isolated rooms where light and air flow is still desired.

"The researchers may [have] found an almost 100 percent absorption of the noise from outside of a room for acoustic isolation as well as high reflection of the inside the room to enhance the reverberation. And most importantly, the allows free interchange of air between the outside and the , which they were unable to do in previous prototypes [with only one end of the tube being open]," Cheng said.

Using the newly developed model, "we may extend asymmetric sound absorption into a two-dimensional planar system by using other types of acoustic resonators to make the asymmetric more widely used," said Cheng.

Explore further: Acoustic metamaterial panel absorbs low-frequency sound

More information: Houyou Long et al, Asymmetric absorber with multiband and broadband for low-frequency sound, Applied Physics Letters (2017). DOI: 10.1063/1.4998516

Related Stories

Designing an acoustic diode

November 1, 2013

Most people know about ultrasound through its role in prenatal imaging: those grainy, grey outlines of junior constructed from reflected sound waves. A new technology called an "acoustic diode," envisioned by researchers ...

Researchers achieve near-perfect absorption of sounds waves

September 16, 2015

(Phys.org)—A team of researchers at Hong Kong University of Science and Technology has found a way to create a material that is near perfect at preventing sound waves from passing through it. In their paper published in ...

Researchers design a new structure that absorbs all sound

May 30, 2014

A new step toward the perfect acoustic absorber. Researchers of the Universitat Politècnica de València at the Campus de Gandia have designed and experimentally evaluated in the laboratory a new structure made of conventional ...

Absorbing acoustics with soundless spirals

February 9, 2016

Researchers at the French National Centre for Scientific Research, CNRS, and the University of Lorraine have recently developed a design for a coiled-up acoustic metasurface which can achieve total acoustic absorption in ...

Recommended for you

Physicists design $100 handheld muon detector

November 20, 2017

At any given moment, the Earth's atmosphere is showered with high-energy cosmic rays that have been blasted from supernovae and other astrophysical phenomena far beyond the Solar System. When cosmic rays collide with the ...

A curious quirk brings organic diode lasers one step closer

November 20, 2017

Since their invention in 1962, semiconductor diode lasers have revolutionized communications and made possible information storage and retrieval in CDs, DVDs and Blu-ray devices. These diode lasers use inorganic semiconductors ...

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.