Related topics: sound

It's a one-way street for sound waves in this new technology

Imagine being able to hear people whispering in the next room, while the raucous party in your own room is inaudible to the whisperers. Yale researchers have found a way to do just that—make sound flow in one direction—within ...

Taking gravity from strength to strength

Ten years ago, ESA launched one of its most innovative satellites. GOCE spent four years measuring a fundamental force of nature: gravity. This extraordinary mission not only yielded new insights into our gravity field, but ...

Researchers develop 'acoustic metamaterial' that cancels sound

Boston University researchers, Xin Zhang, a professor at the College of Engineering, and Reza Ghaffarivardavagh, a Ph.D. student in the Department of Mechanical Engineering, released a paper in Physical Review B demonstrating ...

More evidence of sound waves carrying mass

A trio of researchers at Columbia University has found more evidence showing that sound waves carry mass. In their paper published in the journal Physical Review Letters, Angelo Esposito, Rafael Krichevsky and Alberto Nicolis ...

Assembly in the air: Using sound to defy gravity

Scientists at the University of Bath have levitated particles using sound in an experiment which could have applications in so-called "soft robotics" and help reveal how planets start to form.

page 1 from 23

Longitudinal wave

Longitudinal waves are waves that have same direction of oscillations or vibrations along or parallel to their direction of travel, which means that the oscillations of the medium (particle) is in the same direction or opposite direction as the motion of the wave. Mechanical longitudinal waves have been also referred to as compressional waves or compression waves.

This text uses material from Wikipedia, licensed under CC BY-SA