Tiny fighters in sediments determine success of invasive marine plants

September 14, 2017
Tiny fighters in sediments determine success of invasive marine plants
The alga Caulerpa taxifolia (bright green) takes over a seagrass bed. Credit: Paul Gribben

Armies of microbes that are invisible to the naked eye battle it out to determine whether exotic marine plants successfully invade new territory and replace native species, UNSW-led research shows.

The genetic study, which compared microbial communities in sediments associated with an invasive alga and a native seagrass in Sydney, is the first to test the idea that play a critical role in the establishment of invasive marine species.

"We found that microbes associated with provide resistance to invasion, and microbes associated with invaders break down this resistance and may poison native plants," says study first author and UNSW scientist Associate Professor Paul Gribben.

"A battle is being waged below ground that can affect the outcome in this competition between exotic and native species. This has never been shown before in marine ecosystems and will transform how we think about, and manage, marine invasive species."

The study, by researchers from UNSW, the Sydney Institute of Marine Science, and UTS, Sydney, is published in the journal Scientific Reports.

Microbial communities in marine sediments control ecological processes, affecting the availability of nutrients and the chemistry of the soil.

For the new study, the researchers compared microbial communities living in sediments in a Sydney estuary. They tested sediments associated with a native seagrass, Zostera capricorni, and an alga, Caulerpa taxifolia, which is one of the 100 most invasive in the world.

The microbial communities differed between the two samples, with the algal sediments having a higher proportion of microbes that produce sulphides, which can be extremely toxic to seagrasses, under low oxygen conditions.

The researchers also tested the effects of the different sediments on the growth of the algae. They found the sediments associated with the seagrass reduced algal growth, while the sediments associated with the algae had a positive effect on its growth.

"Our results shed light on why intact, dense beds of seagrass are resistant to colonisation by this alga," says Associate Professor Gribben.

"However, the balance of the in the soil can be disturbed when seagrass beds start to decline due to other pressures, helping the alga invade new areas."

C. taxifolia is a fast-growing marine alga that is native to tropical Australia and the South Pacific, but which has colonised various areas outside its natural range.

It was first found in NSW in 2000 and has spread to at least 14 NSW estuaries or lakes, from Lake Macquarie in the north to Wallagoot Lake in the south.

In the same way that gardeners add worms to soils to make them more productive, the researchers are exploring ways to restore the marine sediments and reduce the risk of invasion. This includes adding burrowing organisms to oxygenate sediments and restore healthy, functioning .

Explore further: Blood is thicker than water for the common reed—At least that's what the soil tells us

More information: Paul E. Gribben et al. Microbial communities in marine sediments modify success of an invasive macrophyte, Scientific Reports (2017). DOI: 10.1038/s41598-017-10231-2

Related Stories

Scientists ponder Cockburn Sound's ecological mysteries

October 1, 2013

Little is known about the microbial ecology of Cockburn Sound – but researchers from the University of WA and Edith Cowan University are investigating its seagrass root and rhizome sediments and how the presence of seagrasses ...

Day of reckoning for marine invaders

September 1, 2017

For centuries, marine species have moved around either by hitching ride on the hulls of ships or as stowaways in ballast water. In many instances, species have been deliberately introduced for aquaculture or other commercial ...

Tropical seagrass examined for light pressures

April 2, 2015

Research into seagrass susceptibility to dredging activities has revealed exactly how fragile some of the tropical marine plants species are when faced with a decreased level of light.

Tiny grazers play key role in marine ecosystem health

April 2, 2013

Tiny sea creatures no bigger than a thumbtack are being credited for playing a key role in helping provide healthy habitats for many kinds of seafood, according to a new study by the Virginia Institute of Marine Science and ...

Recommended for you

Re-cloning of first cloned dog deemed successful thus far

November 22, 2017

(Phys.org)—A team of researchers with Seoul National University, Michigan State University and the University of Illinois at Urbana-Champaign has re-cloned the first dog to be cloned. In their paper published in the journal ...

Testing the advantage of being left-handed in sports

November 22, 2017

(Phys.org)—Sports scientist Florian Loffing with the Institute of Sport Science, University of Oldenburg in Germany has conducted a study regarding the possibility of left-handed athletes having an advantage over their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.