A one-dimensional fluidic nanogenerator to draw electricity from the bloodstream

September 8, 2017
Credit: Wiley

People build dams and huge turbines to turn the energy of waterfalls and tides into electricity. To produce hydropower on a much smaller scale, Chinese scientists have now developed a lightweight power generator based on carbon nanotube fibers suitable to convert even the energy of blood flowing through vessels into electricity. They describe their innovation in the journal Angewandte Chemie.

For thousands of years, people have used the energy of flowing or falling water for their purposes, first to mechanical engines such as watermills, then to generate electricity by exploiting height differences in the landscape or sea tides. Using naturally flowing water as a sustainable power source has the advantage that there are (almost) no dependencies on weather or daylight. Even flexible, minute power generators that make use of the flow of biological fluids are conceivable. How such a system could work is explained by a research team from Fudan University in Shanghai, China. Huisheng Peng and his co-workers have developed a fiber with a thickness of less than a millimeter that generates electrical power when surrounded by flowing saline solution—in a thin tube or even in a blood vessel.

The construction principle of the fiber is quite simple. An ordered array of carbon nanotubes was continuously wrapped around a polymeric core. Carbon nanotubes are well known to be electroactive and mechanically stable; they can be spun and aligned in sheets. In the as-prepared electroactive threads, the sheets coated the fiber core with a thickness of less than half a micron. For power generation, the thread or "fiber-shaped fluidic nanogenerator" (FFNG), as the authors call it, was connected to electrodes and immersed into flowing water or simply repeatedly dipped into a saline solution. "The electricity was derived from the relative movement between the FFNG and the solution," the scientists explained. According to the theory, an electrical double layer is created around the fiber, and then the flowing solution distorts the symmetrical charge distribution, generating an gradient along the long axis.

The power output efficiency of this system was high. Compared with other types of miniature energy-harvesting devices, the FFNG was reported to show a superior of more than 20 percent. Other advantages are elasticity, tunability, lightweight, and one-dimensionality, thus offering prospects of exciting technological applications. The FFNG can be made stretchable just by spinning the sheets around an elastic fiber substrate. If woven into fabrics, wearable electronics become thus a very interesting option for FFNG application. Another exciting application is the harvesting of electrical energy from the bloodstream for medical applications. First tests with frog nerves proved to be successful.

Explore further: Highly stretchable fiber-shaped supercapacitor based on carbon nanotubes

More information: Yifan Xu et al. A One-Dimensional Fluidic Nanogenerator with a High Power Conversion Efficiency, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201706620

Related Stories

IV and cellular fluids power flexible batteries

August 10, 2017

Researchers in China have engineered bendable batteries that can run on body-inspired liquids such as normal IV saline solution and cell-culture medium. In their work, published August 10 in the journal Chem, the authors ...

Inexpensive flexible fiber perovskite solar cells

August 4, 2014

(Phys.org) —Textile solar cells are an ideal power source for small electronic devices incorporated into clothing. In the journal Angewandte Chemie, Chinese scientists have now introduced novel solar cells in the form of ...

Smart supercapacitor fiber with shape memory

November 20, 2015

Wearing your mobile phone display on your jacket sleeve or an EKG probe in your sports kit are not off in some distant imagined future. Wearable "electronic textiles" are on the way. In the journal Angewandte Chemie, Chinese ...

New fabric uses sun and wind to power devices

September 13, 2016

Fabrics that can generate electricity from physical movement have been in the works for a few years. Now researchers at Georgia Institute of Technology have taken the next step, developing a fabric that can simultaneously ...

Recommended for you

Four elements make 2-D optical platform

September 21, 2017

Rice University scientists have discovered a two-dimensional alloy with an optical bandgap that can be tuned by the temperature used to grow it.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Sep 08, 2017
Blood clots

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.