Mechanism behind platinum catalyst captured

September 8, 2017, Leiden University
Mechanism behind platinum catalyst captured
Left: Image made with a Scanning Tunneling Microscope (STM). Image of a platinum surface under a pressure of 1 atmosphere of oxygen at 256 °C. Under these circumstances, we see spontaneous growth of a spoke wheel structure of embedded PtO2 rows with many structural errors. Right: The oxidized platinum atoms in light blue, the oxygen atoms in red and the regular platinum atoms at the surface in dark blue (layer 1), grey (layer 2) and black (layer 3). Credit: Leiden University

Cars are equipped with catalysts to disarm toxic exhaust gases. Platinum plays an important role there. Leiden physicists and chemists have now for the first time seen the mechanism behind a platinum catalyst. With a fundamental understanding of the process, scientists can use this rare material more efficiently. Publication in Nature Communications.

The exhaust gases of over one billion cars worldwide contribute significantly to global warming. But without catalysts, cars would be even more polluting. After toxic exhaust gases leave the engine, catalysts convert those into less harmful substances. Platinum plays an important role here, by eliminating the toxic carbon monoxide. This noble metal is very rare and therefore scientists are researching how to use it as efficient as possible.


Platinum works as a by collecting oxygen atoms (O), and letting them bind with the toxic carbon monoxide (CO), to create the less harmful carbon dioxide (CO2). Physicist Joost Frenken and chemists Irene Groot and Matthijs van Spronsen of Leiden University have now for the first time imaged how this process works at the atomic level. With a special home-built microscope they saw an ultra-thin oxygen layer grow on a platinum surface. This happened under realistic circumstances, meaning at the same high pressure and temperature as inside an engine, which made the experiment extra difficult. The researchers discovered that the are somewhat "loose," so that they can easily react with other substances. This provides for the first time a good explanation for the high catalytic activity of platinum in oxidation reactions.


By unravelling the mechanism behind the , the Leiden scientists contribute to a better fundamental understanding of catalysis. In the long run, scientists could exploit this knowledge to use rare materials like platinum more efficiently. Groot: "Then we either need less platinum to get the same result, or we understand the catalysis mechanism behind so well that we can create a substitute material."

Explore further: Rough surfaces provide additional sites for energy-generating reactions in fuel cells

More information: Matthijs A. van Spronsen et al. Observing the oxidation of platinum, Nature Communications (2017). DOI: 10.1038/s41467-017-00643-z

Related Stories

Platinum and iron oxide working together get the job done

September 16, 2015

Scientists at the Vienna University of Technology (TU Wien) have figured out how a platinum catalyst works. Its remarkable properties are not just due to the platinum, the iron-oxide substrate beneath also plays a role.

Harnessing light to drive chemical reactions

July 18, 2017

An exotic interaction between light and metal can be harnessed to make chemical reactions more sustainable, but the physics behind it has been widely debated in the field.

Lonely atoms, happily reunited

July 26, 2016

The remarkable behaviour of platinum atoms on magnetite surfaces could lead to better catalysts. Scientists at TU Wien (Vienna) can now explain how platinum atoms can form pairs with the help of carbon monoxide.

Ruthenium rules for new fuel cells

June 28, 2017

Rice University scientists have fabricated a durable catalyst for high-performance fuel cells by attaching single ruthenium atoms to graphene.

Large or small, platinum clusters provide new insights

April 28, 2011

Using Environmental Molecular Sciences Laboratory's high-performance supercomputing capabilities, scientists helped resolve longstanding controversies about the effect of platinum cluster size on some emissions-reducing reactions ...

Recommended for you

Wearable device measures cortisol in sweat

July 20, 2018

The hormone cortisol rises and falls naturally throughout the day and can spike in response to stress, but current methods for measuring cortisol levels require waiting several days for results from a lab. By the time a person ...

Researchers report two-faced Janus membrane applications

July 20, 2018

Named for the mythical god with two faces, Janus membranes—double-sided membranes that serve as gatekeepers between two substances—have emerged as a material with potential industrial uses. Creating two distinct "faces" ...

Chemists characterize the fatal fungus among us

July 19, 2018

Life-threatening fungal infections affect more than two million people worldwide. Effective antifungal medications are very limited. Until now, one of the major challenges is that the fungal cell wall is poorly understood, ...

Infrared sensor as new method for drug discovery

July 19, 2018

Using an infrared sensor, biophysicists at Ruhr-Universität Bochum (RUB) have succeeded in analysing quickly and easily which active agents affect the structure of proteins and how long that effect lasts. Thus, Prof Dr. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

5 / 5 (1) Sep 08, 2017
less platinum to get the same result, or we understand the catalysis mechanism behind platinum so well that we can create a substitute material.
Spot on summary, the start of some great work.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.