Graphene based terahertz absorbers

September 12, 2017, Graphene Flagship
Printable graphene inks enable ultrafast lasers in the terahertz range. Credit: Graphene Flagship

Graphene Flagship researches from CNR-Istituto Nanoscienze, Italy and the University of Cambridge, UK have shown that it is possible to create a terahertz saturable absorber using graphene produced by liquid phase exfoliation and deposited by transfer coating and ink jet printing. The paper, published in Nature Communications, reports a terahertz saturable absorber with an order of magnitude higher absorption modulation than other devices produced to date.

A saturable absorber decreases its absorption of light in the terahertz range (far infrared) with increasing light intensity and has great potential for the development of terahertz lasers, with applications in spectroscopy and imaging. These high-modulation, mode-locked lasers open up many prospects in applications where short time scale excitation of specific transitions are important, such as time-resolved spectroscopy of gasses and molecules, quantum information or ultra-high speed communication.

"We started working on saturable terahertz absorbers to solve the problem of producing a miniaturized mode-locked terahertz with thin and flexible integrated components that also had good modulation," said Graphene Flagship researcher Miriam Vitiello from CNR-Istituto Nanoscienze in Italy.

Graphene is a promising saturable absorber as it has intrinsic broadband operations and ultrafast recovery time along with an ease of fabrication and integration, as first demonstrated in ultra-fast infra-red lasers by Flagship partner University of Cambridge. In the terahertz range, the present paper exploits graphene produced by liquid phase exfoliation, a method ideally suited to mass production, to prepare inks, easily deposited by transfer coating or

"It was important to us to use a type of graphene that could be integrated into the laser system with flexibility and control" said Vitiello "Ink jet printing along with transfer coating achieved that."

Using mode-locked lasers to produce ultra fast pulses in the terahertz range can have interesting and exciting uses. "These devices could have applications in medical diagnostics when time of flight topography is of importance – you could see a tumour inside a tissue," said Vitiello.

Frank Koppens, of the Institute of Photonic Sciences in Spain, is the leader of the Graphene Flagship's Photonics and Optoelectronics Work Package, which focuses on developing graphene-based technologies for imaging and sensing, data transfer and other photonics applications. "This is a new discovery with immediate impact on applications. Clearly, this is a case where graphene beats existing materials in terms of efficiency, scalability, compactness and speed," he said.

Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and Chair of its Management Panel added "It is an important milestone to have demonstrated that easily produced and printable graphene inks can also serve to enable ultrafast lasers in the . Since the Flagship's inception, a variety of lasers have been made covering the visible to IR spectral range, but now the important THz range, with in security and medical diagnostic, is finally made accessible by , starting yet another possible application field."

Explore further: Graphene and terahertz waves could lead the way to future communication

More information: Vezio Bianchi et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite, Nature Communications (2017). DOI: 10.1038/ncomms15763

Related Stories

Towards mastering terahertz waves?

March 7, 2017

The terahertz waves span frequency ranges between the infrared spectrum (used, for example, for night vision) and gigahertz waves (which find their application, among other, in Wi-Fi connections). Terahertz waves allow for ...

Graphene plasmons used to create tunable terahertz laser

January 15, 2016

(—A team of researchers working at the University of Manchester in the U.K has developed a tunable teraherz laser using the unique properties of graphene plasmons. In their paper published in the journal Science, ...

Graphene coated motorcycle helmet launched

November 25, 2016

The Graphene Flagship presents an early success story in translating graphene's properties to marketable technologies. This autumn sees the commercial launch of a motorcycle helmet that benefits from the inclusion of graphene. ...

Recommended for you

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.