Fast heat flows in warm, dense aluminum

September 1, 2017 by Anne M Stark, Lawrence Livermore National Laboratory
Fast heat flows in warm, dense aluminum
Illustration of the experimental setup. The multilayer target in the middle is heated by a proton beam (purple) generated by a high-intensity laser pulse interaction with a Cu foil (orange). Raw images from three diagnostics probing the heated back surface are displayed at the left side. From top to bottom: time-resolved optical pyrometry, proton energy spectrum and time-resolved interferogram. Credit: Lawrence Livermore National Laboratory

Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution and energy balance in systems ranging from astrophysical objects to fusion plasmas.

In the warm dense matter (WDM) regime, experimental data are very rare, so many theoretical models remain untested.

But LLNL researchers have tested theory by developing a platform called "differential heating" to conduct measurements. Just as land and water on Earth heat up differently in sunlight, a temperature gradient can be induced between two different . The subsequent heat flow from the hotter material to the cooler material is detected by time-resolved diagnostics to determine thermal .

In an experiment using the Titan laser at the Lab's Jupiter Laser Facility, LLNL researchers and collaborators achieved the first measurements of thermal conductivity of warm dense aluminum—a prototype material commonly used in model development—by heating a dual-layer target of gold and aluminum with laser-generated protons.

"Two simultaneous time-resolved diagnostics provided excellent data for gold, the hotter material, and aluminum, the colder material," said Andrew Mckelvey, a graduate student from the University of Michigan and the first author of a paper appearing in Scientific Reports . "The systematic data sets can constrain both the release equation of state (EOS) and thermal conductivity."

By comparing the data with simulations using five existing thermal conductivity models, the team found that only two agree with the data. The most commonly used model in WDM, called the Lee-More model, did not agree with data. "I am glad to see that Purgatorio, an LLNL-based , agrees with the data," said Phil Sterne, LLNL co-author and the group leader of EOS development and application group in the Physics Division. "This is the first time these thermal conductivity models of aluminum have been tested in the WDM regime."

"Discrepancy still exists at early time up to 15 picoseconds," said Elijah Kemp, who is responsible for the simulation efforts. "This is likely due to non-equilibrium conditions, another active research area in WDM."

The team is led by Yuan Ping through her early career project funded by the Department of Energy Office of Fusion Energy Science Early Career Program. "This platform can be applied to many pairs of materials and by various heating methods including particle and X-ray heating," Ping said.

Explore further: Researchers find way to tune thermal conductivity of 2-D materials

More information: A. McKelvey et al. Thermal conductivity measurements of proton-heated warm dense aluminum, Scientific Reports (2017). DOI: 10.1038/s41598-017-07173-0

Related Stories

New materials for future green tech devices

July 15, 2014

From your hot car to your warm laptop, every machine and device in your life wastes a lot of energy through the loss of heat. But thermoelectric devices, which convert heat to electricity and vice versa, can harness that ...

Recommended for you

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.