Thermal conductivity of argon at high pressures and temperatures

June 5, 2012, American Institute of Physics

Diamond anvil cells (DACs) are used routinely in laboratories to apply extreme pressure to materials, recreating conditions that normally only occur deep in planetary interiors or during certain industrial manufacturing techniques. Under these conditions, however, it is difficult to measure how materials conduct heat.

To better understand , researchers from the United States and Sweden placed a thin film of iridium sandwiched between layers of argon in a DAC, subjected it to extreme pressure (50 gigapascals) and then used microsecond laser bursts to heat it to 2,500 degrees K. The researchers measured the temperature history of the iridium foil and used that data to calculate the thermal conductivity of the argon.

Their results confirmed that one model, kinetic theory, better matched observations than another model, Green-Kubo formalism. These results are important for ongoing studies of how minerals behave in the Earth's mantle and core.

Explore further: Part of Earth's mantle shown to be conductive under high pressure and temperatures

More information: "Thermal conductivity of argon at high pressures and high temperatures" Journal of Applied Physics

Related Stories

Baked Slug: New Method to Test Fireproofing Material

October 2, 2008

In a high-temperature blaze, how well does a fireproofing material shield a building’s important steel structures from heat? Answering this question has been surprisingly difficult, but it is important information for builders ...

Recommended for you

Researchers study interactions in molecules using AI

October 19, 2018

Researchers from the University of Luxembourg, Technische Universität Berlin, and the Fritz Haber Institute of the Max Planck Society have combined machine learning and quantum mechanics to predict the dynamics and atomic ...

Pushing the extra cold frontiers of superconducting science

October 18, 2018

Measuring the properties of superconducting materials in magnetic fields at close to absolute zero temperatures is difficult, but necessary to understand their quantum properties. How cold? Lower than 0.05 Kelvin (-272°C).

The big problem of small data: A new approach

October 18, 2018

Big Data is all the rage today, but Small Data matters too! Drawing reliable conclusions from small datasets, like those from clinical trials for rare diseases or in studies of endangered species, remains one of the trickiest ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.