Scientists have synthesized new liquid-crystalline photochrom

August 21, 2017, Lomonosov Moscow State University
LCD texture observed in a polarization-optical microscope. Credit: Alexey Bobrovsky

Chemists at the Lomonosov Moscow State University, in collaboration with Czech partners, have synthesized and studied new liquid-crystal photochromic polymers. These polymers combine optical properties of liquid crystals with mechanical properties of polymers. They quickly change molecular orientation under the influence of external fields and form coatings, films and details of complex shape. An important advantage of such systems in comparison with low-molecular-mass liquid crystals is that at room temperature, liquid-crystal polymers exist in a glass-like state, with fixed molecular orientation.

Liquid-crystal polymers comprise molecules with high molecular mass, called macromolecules. They are comb-shaped, which implies that photosensitive rigid azobenzene fragments (C6H5N=NC6H5) are attached to the main flexible polymer chain with the help of spacers, consisting of CH2 moieties. These fragments are striving for sequencing and could form a wide variety of "packings"—namely, liquid-crystal phases. When strikes such polymers, azobenzene groups isomerize, which results in alteration of polymers' . Such polymers are called photochromic.

The scientists have paid special attention to the processes of photoisomerization and photo-orientation. Photoisomerization is rearrangement of bonds inside a polymer molecule under the influence of light. In this study, photo-orientation is the alteration of rod-like azobenzene fragments' orientation with plane polarized light, the direction of which determines the electric field. When exposed to polarized light, azobenzene fragments change their angle in the course of photoisomerization cycles. This occurs until their orientation becomes perpendicular to the polarization plane of the incident light and the fragments are no longer capable of absorbing light. The photo-orientation process not only allows researchers to change the orientation of azobenzene fragments of macromolecules, but also causes dichroism and birefringence. Dichroism is the intensity difference of polarized light absorption in orthogonal directions. Birefringence refers to a light beam splitting into two components with orthogonal (perpendicular) polarization; the direction of one of these components doesn't change, while the second beam is refracted.

Alexey Bobrovsky, one of the article authors, says, "The key idea of our project is to study how the chemical structure of new comb-shaped liquid-crystal photochromic polymers influences their phase behavior and photooptical properties. Photoisomerization and photo-orientation processes allow us to control the phase behavior and optical properties of the elaborated systems."

According to the authors, the most significant task was to study photo-optical properties and photochromism of the obtained polymers. This stage was divided into two parts: irradiation of the films by unpolarized UV light, during which photoisomerization (namely, rearrangement of intermolecular communications) took place. And the second part involved irradiation by polarized light resulting in photo-orientation.

Alexey Bobrovsky observes that the article relates to a major cycle of projects devoted to photoinduced processes in photochromic polymers. The scientist says, "Photoisomerization and photo-orientation have applications for so-called smart materials. They react to any external stimuli and could be used for information recording, storage and transfer, as well as in optical devices of diverse complexity. These precise polymers are not practical in a real-life scenario, as they are too expensive and their synthesis is quite complicated. On the other hand, you can't always predict what systems have applications in the future."

Explore further: Broadband light sources with liquid core

More information: Alexey Bobrovsky et al, Photo-Orientation Phenomena in Photochromic Liquid Crystalline Azobenzene-Containing Polymethacrylates with Different Spacer Length, Macromolecular Chemistry and Physics (2017). DOI: 10.1002/macp.201700127

Related Stories

Broadband light sources with liquid core

July 31, 2017

Research scientists from Jena have produced broadband laser light in the mid-infrared range with the help of liquid-filled optical fibers. The experiment produced proof of a new dynamics of hybrid solitons—temporally and ...

Liquid crystals open new route to planar optical elements

June 16, 2016

Researchers at Osaka University developed a technology to control the light wavefront reflected from a cholesteric liquid crystal - a liquid crystal phase with a helical structure. Although known for their ability to Bragg-reflect ...

When liquid crystals with a metal center are 'shaking hands'

March 14, 2005

Without liquid crystals (LC's) our cell phones and notebook computers would not be possible, for these compounds keep our display screens flat and lightweight. Being a phase of matter whose order is intermediate between that ...

Recommended for you

How to build efficient organic solar cells

July 17, 2018

Organic solar cells, made from carbon-based materials, present unique advantages compared with other solar cell technologies. For example, they can be manufactured through low-cost printing technologies, and they can be made ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.