Broadband light sources with liquid core

Broadband light sources with liquid core
An illustration of a light pulse breaking up into solitons inside the optical fiber. Credit: IPHT Jena

Research scientists from Jena have produced broadband laser light in the mid-infrared range with the help of liquid-filled optical fibers. The experiment produced proof of a new dynamics of hybrid solitons—temporally and spectrally stationary light waves resulting from the unique characteristics of the liquid core.

The researchers pumped a hybrid waveguide with an ultrafast, intense laser pulse and produced a very broad light spectrum in the near and mid-infrared range (1.1 μm to 2.7 μm) not visible to the human eye. Due to the unique characteristics of the liquid fiber core, the is broken up into solitons—a multitude of light waves with different wavelengths. The solitons form a supercontinuum light source with possible applications in medical imaging, measurement technology and spectroscopy. The team of research scientists from the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena and collaborators published the results of their work in the journal Nature Communications.

The coupled, ultrafast light pulse breaks up into solitons due to non-linear interactions with matter in the optical fiber. In case of liquid core fibers, this means that the optical density of the liquid inside the core changes significantly with the intensity of the incident light. However, not many materials show nonlinear optical effects while producing sufficient light transmission in the infrared spectral range. Mario Chemnitz, scientist at Leibniz IPHT and first author of the publication, explains the unusual effect as follows: "The fiber core is filled with carbon disulfide, a liquid chemical compound with a very high refractive index. If we couple polarized light into the core, the carbon disulfide molecules orient themselves along the electromagnetic field of the light. Due to this molecular orientation, the optical density—and thus the light propagation in the fiber—depends on the intensity of the laser light."

Optical memory effect

One unique feature of is that the molecules orient themselves with a certain time delay. If the incident laser light pulse is much shorter than the time that the molecules require for orientation in the optical field, the research scientists can observe a special, delayed dynamic of the resulting solitons. This was predicted back in 2010, but it was only now that the scientists could provide experimental proof and an exact theoretical description of the processes. Mario Chemnitz describes this phenomenon as an optical "memory effect" of the liquid. This unique characteristic of the liquid fiber cores reduces fluctuations in the spectral bandwidth of the supercontinuum light source and makes liquid core fibers a more stable alternative to the known broadband sources based on optical fibers made from special glasses.

Explore further

Soliton molecules caused to vibrate like real molecules

More information: Mario Chemnitz et al, Hybrid soliton dynamics in liquid-core fibres, Nature Communications (2017). DOI: 10.1038/s41467-017-00033-5
Journal information: Nature Communications

Provided by Leibniz-Institute of Photonic Technology
Citation: Broadband light sources with liquid core (2017, July 31) retrieved 27 October 2020 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments