MOF keeps humidity in the Goldilocks zone

August 7, 2017, King Abdullah University of Science and Technology
MOF keeps humidity in the Goldilocks zone
Figure caption/credit: As relative humidity rises, the MOF goes from dry (far left) to completely filled with water molecules (far right); water molecules shown in blue. Credit: American Chemical Society

A novel porous material can soak up excessive humidity in a room only to release it again when the humidity falls. Now KAUST researchers have devised a metal-organic framework (MOF) material that monitors its own properties.

MOFs are a class of microporous materials consisting of single metals or metal clusters connected by organic linker molecules. By varying metals and organic linkers, researchers can precisely control the shape, size and functionality of the material's micropore system, which in turn affects the material's capacity for adsorbing certain molecules. Various MOFs have been designed to selectively capture carbon dioxide, for example. Others have been designed to adsorb .

This new MOF can regulate conditions perfectly within the window of comfortable and healthy humidity levels established by the American Society of Heating, Refrigeration and Air Conditioning Engineers. It could be used to modulate humidity in indoor spaces, aircraft cabins or even space shuttles.

Guided by the MOF design strategies developed at KAUST, Mohamed Eddaoudi and his team in the Advanced Membranes and Porous Materials Center used the molecular building block approach to assemble water-stable Y-shp-MOF-5. This is a highly connected MOF in which rare earth-metal-based clusters are connected by 12 organic linkers.

"Y-shp-MOF-5 exhibits exceptional behavior when exposed to water vapor at different humidity levels," says Eddaoudi's PhD student Rasha Abdul Halim. The MOF took up little water in dry air, but if the exceeds 55 percent, the material's water adsorption rose steeply.

Remarkably, if the relative humidity dipped below 45 percent, the MOF released its adsorbed water, which meant it autonomously maintained relative humidity within the comfortable and safe range of 45-65 percent. It retained this performance even after more than 1000 water vapor adsorption-desorption cycles. "This behavior is unusual for microporous ," says Youssef Belmabkhout, a senior researcher in Eddaoudi's group.

"The phenomena with water adsorption in Y-shp-MOF-5 are distinctive in nature," AbdulHalim adds. "The key to the material's low water absorption at low relative humidity is its relatively high proportion of hydrophobic organic linkers," she says. "Only at higher water-vapor pressure is the hydrophobicity overcome as water molecules form rapidly growing clusters within the MOF's pores."

"Y-shp-MOF-5's unique behavior puts it at the forefront of energy-efficient technologies for autonomous moisture-control systems in enclosed spaces," says Eddaoudi, who also told us that the team is pursuing the development of new MOFs with similar adsorption-desorption properties, but with superior -uptake capacity.

Explore further: MOFs provide a better way to remove water from gas

More information: Rasha G. AbdulHalim et al. A Fine-Tuned Metal–Organic Framework for Autonomous Indoor Moisture Control, Journal of the American Chemical Society (2017). DOI: 10.1021/jacs.7b04132

Related Stories

Recommended for you

New fuel cell technology runs on solid carbon

January 22, 2018

Advancements in a fuel cell technology powered by solid carbon could make electricity generation from resources such as coal and biomass cleaner and more efficient, according to a new paper published by Idaho National Laboratory ...

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.