Scientists propose method to help keep new grid components operational and safe

June 12, 2017, Chinese Association of Automation

The power grid's physical components are continuously improving, with the integration of renewable power sources and advances in physical technology. The software underlying the safe function of the upgraded grid, however, isn't keeping up.

Engineers depend on the software to predict and correct for potential errors to set constraints on the rest of the system. Scientists from Case Western Reserve University in Cleveland, Ohio, have proposed a new way to calculate and correct a particularly critical error in large-scale distribution systems. They published their method in IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the IEEE and the Chinese Association of Automation.

"We need new methods for calculations of emerging distribution systems to properly model and calculate these systems in faulted conditions," said Luka Strezoski, a doctoral student at Case Western Reserve University and an author on the paper.

In the traditional grid system, the power alternates currents, which can result in a fault if it the current encounters an pathway with no resistance. This short-circuit fault can produce power 30 times the intended rate, which can lead power disruption, equipment damage, and even fire.

"The biggest difference between modern distributed generators and traditional alternating current machines [if a fault occurs]... is that the short-circuit currents of modern distributed generators are controlled, whereas traditional alternating current machines lose their control," Strezoski said. It may sound safer to maintain control, but the difference causes several problems.

Engineers use the current range calculated by a short-circuit computation to set the relay limits for the entire system. The computation used on a traditional system is time-tested as accurate and reliable. The same computation on a distributed generation system, with decentralized power dispersal, introduces high errors with a trickle down effect of miscalculations for the rest of the system.

"The real-time short-circuit computation needs to satisfy two necessary assets: it needs to be fast, and it needs to highly accurate," said Strezoski.

Strezoski and his team simplified an existing algorithm, capable of predicting every potential future and past state of a system and using those states to make real-time operating decisions quickly, and combined it with another algorithm capable of modeling traditional and modern systems. The proposed method was used in four large-scale simulations, and it was able to accurately optimize the system in 74 milliseconds.

The researchers are now examining how to predict and correct other fault types, as well as developing potential control strategies for emerging distributed energy resources.

Explore further: Scientists propose new method to correct common power problem in microgrids

More information: Luka V. Strezoski et al, Short-circuit analysis in large-scale distribution systems with high penetration of distributed generators, IEEE/CAA Journal of Automatica Sinica (2017). DOI: 10.1109/JAS.2017.7510517

Related Stories

How to harness the power of the wind

June 9, 2017

There might be a better way to use wind power, according to a recent paper in IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the Institute of Electrical and Electronic Engineers (IEEE) and the Chinese ...

The power of wind energy and how to use it

January 26, 2017

Wind offers an immense, never-ending source of energy that can be successfully harnessed to power all of the things that currently draw energy from nonrenewable resources. But wind frequency varies with weather patterns.

Recommended for you

Researchers find tweeting in cities lower than expected

February 20, 2018

Studying data from Twitter, University of Illinois researchers found that less people tweet per capita from larger cities than in smaller ones, indicating an unexpected trend that has implications in understanding urban pace ...

Augmented reality takes 3-D printing to next level

February 20, 2018

Cornell researchers are taking 3-D printing and 3-D modeling to a new level by using augmented reality (AR) to allow designers to design in physical space while a robotic arm rapidly prints the work.

What do you get when you cross an airplane with a submarine?

February 15, 2018

Researchers from North Carolina State University have developed the first unmanned, fixed-wing aircraft that is capable of traveling both through the air and under the water – transitioning repeatedly between sky and sea. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.