Scientists discover a 2-D magnet

June 7, 2017
Top-view depiction of a single CrI3 layer. Grey balls represent Cr atoms, and purple balls are I atoms. Credit: Efren Navarro-Moratalla

Magnetic materials form the basis of technologies that play increasingly pivotal roles in our lives today, including sensing and hard-disk data storage. But as our innovative dreams conjure wishes for ever-smaller and faster devices, researchers are seeking new magnetic materials that are more compact, more efficient and can be controlled using precise, reliable methods.

A team led by the University of Washington and the Massachusetts Institute of Technology has for the first time discovered magnetism in the 2-D world of monolayers, or that are formed by a single atomic layer. The findings, published June 8 in the journal Nature, demonstrate that magnetic properties can exist even in the 2-D realm—opening a world of potential applications.

"What we have discovered here is an isolated 2-D material with intrinsic magnetism, and the magnetism in the system is highly robust," said Xiaodong Xu, a UW professor of physics and of materials science and engineering, and member of the UW's Clean Energy Institute. "We envision that new information technologies may emerge based on these new 2-D magnets."

Xu and MIT physics professor Pablo Jarillo-Herrero led the international team of scientists who proved that the material—chromium triiodide, or CrI3—has magnetic properties in its monolayer form.

Other groups, including co-author Michael McGuire at the Oak Ridge National Laboratory, had previously shown that CrI3—in its multilayered, 3-D, bulk crystal form—is ferromagnetic. In ferromagnetic materials, the "spins" of constituent electrons, analogous to tiny, subatomic magnets, align in the same direction even without an external magnetic field.

But no 3-D magnetic substance had previously retained its magnetic properties when thinned down to a single atomic sheet. In fact, monolayer materials can demonstrate unique properties not seen in their multilayered, 3-D forms.

"You simply cannot accurately predict what the electric, magnetic, physical or chemical properties of a 2-D monolayer crystal will be based on the behavior of its 3-D bulk counterpart," said co-lead author and UW doctoral student Bevin Huang.

Atoms within monolayer materials are considered "functionally" two-dimensional because the electrons can only travel within the atomic sheet, like pieces on a chessboard.

To discover the properties of CrI3 in its 2-D form, the team used Scotch tape to shave a monolayer of CrI3 off the larger, 3-D crystal form.

"Using Scotch tape to exfoliate a monolayer from its 3-D bulk crystal is surprisingly effective," said co-lead author and UW doctoral student Genevieve Clark. "This simple, low-cost technique was first used to obtain graphene, the 2-D form of graphite, and has been used successfully since then with other materials."

In ferromagnetic materials, the aligned spins of electrons leave a telltale signature when a beam of polarized light is reflected off the material's surface. The researchers detected this signature in CrI3 using a special type of microscopy. It is the first definitive sign of intrinsic ferromagnetism in an isolated monolayer.

Surprisingly, in CrI3 flakes that are two layers thick, the optical signature disappeared. This indicates that the electron spins are oppositely aligned to one another, a term known as anti-ferromagnetic ordering.

Ferromagnetism returned in three-layer CrI3. The scientists will need to conduct further studies to understand why CrI3 displayed these remarkable layer-dependent magnetic phases. But to Xu, these are just some of the truly unique properties revealed by combining monolayers.

"2-D monolayers alone offer exciting opportunities to study the drastic and precise electrical control of magnetic properties, which has been a challenge to realize using their 3-D bulk crystals," said Xu. "But an even greater opportunity can arise when you stack monolayers with different physical properties together. There, you can get even more exotic phenomena not seen in the monolayer alone or in the 3-D bulk crystal."

Much of Xu's research centers on creating heterostructures, which are stacks of two different ultrathin materials. At the interface between the two materials, his team searches for new physical phenomena or new functions to allow potential applications in computing and information technologies.

In a related advance, Xu's research group, UW electrical engineering and physics professor Kai-Mei Fu led a team of colleagues published a paper May 31 in Science Advances showing that an ultrathin form of CrI3, when stacked with a monolayer of tungsten diselenide, creates a ultraclean "heterostructure" interface with unique and unexpected photonic and magnetic properties.

"Heterostructures hold the greatest promise of realizing new applications in computing, database storage, communications and other applications we cannot even fathom yet," said Xu.

Xu and his team would next like to investigate the unique to 2-D magnets and heterostructures that contain a CrI3 or bilayer.

Explore further: First experimental proof of a 70 year old physics theory

More information: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature (2017). nature.com/articles/doi:10.1038/nature22391

Related Stories

First experimental proof of a 70 year old physics theory

January 3, 2017

PARK Je-Geun, Associate Director at the Center for Correlated Electron Systems and collaborators have demonstrated the magnetic behavior of a special class of 2-D materials. This is the first experimental proof to a theory ...

Czech scientists develop magnetic carbon

March 6, 2017

A dream of many generations of researchers has been fulfilled by a discovery made by scientists at the Regional Centre of Advanced Technologies and Materials (RCPTM) at the Palacky University in Olomouc. By using graphene, ...

Recommended for you

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

dnatwork
5 / 5 (1) Jun 07, 2017
So you could write information magnetically and read it out with a laser? Maybe write many bits at once with an array of magnets on one side, and read out many bits at once with a laser array and interferometer on the other side.
JongDan
5 / 5 (1) Jun 07, 2017
Interesting. Why doesn't Mermin–Wagner–Berezinskii theorem apply in this case?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.