Ultrathin semiconducting sheet showing gas-responsive electronic properties for highly sensitive gas sensors

Ultrathin semiconducting sheet showing gas-responsive electronic properties for highly sensitive gas sensors
Atomistic model showing the charge accumulation (yellow) and depletion (red) upon NO adsorption on PtSe2 monolayer. Platinum atoms appear in gray and selenium atoms are shown in green. Credit: Reproduced with permission from ref 1. © 2016 WILEY-VCH

Gas detectors capable of sensing minute quantities of pollutants could help better monitor air quality. Saudi Arabia's King Abdullah University of Science and Technology (KAUST) researchers have discovered a two-dimensional electronic material that exhibits high sensitivity to gas molecules, such as carbon dioxide (CO2), nitrogen oxides (NOx) and ammonia (NH3).

Atomically thin sheets consisting of transition metals associated with chalcogen atoms, such as sulfur, selenium and tellurium, are versatile alternatives to the more conventional silicon-based semiconductors. Depending on their metal component, these transition metal dichalcogenide monolayers have band gaps—energy barriers that limit electron flow through a material—that can be tuned to alter their .

The unique electronic properties of these monolayers have potential to improve a plethora of devices, including , photodetectors and gas sensors.

Semiconducting monolayers are proven to be ideal candidates as gas sensing materials because they have a high surface-to-volume ratio. For example, MoS2 has been incorporated in field-effect transistors to detect nitrogen monoxide. However, its performance is limited by its relatively low or by the velocity at which its electrons (or holes) move when subjected to an electric field.

To overcome these shortcomings, KAUST Professor Udo Schwingenschlögl's team evaluated the potential of the platinum dichalcogenide PtSe2 for use in via sophisticated computational techniques.

"Monolayer PtSe2 experimentally shows a high carrier mobility, which can be advantageous for gas sensing," said Schwingenschlögl, adding that this material had not previously been considered for this purpose. This approach shows the interaction between monolayer and at both structural and electronic levels.

First, the researchers built a model monolayer composed of selenium atoms that formed octahedral arrangements with one platinum atom at their center. Next, they determined the optimal geometry adopted by individual gas molecules, such as NOx, NH3, H2O, CO2 and CO, upon adsorption. They assessed the capacity of these adsorbed molecules to transfer charge to the monolayer by examining adsorption-induced changes in the electronic properties.

These calculations provided high adsorption energies, indicating strong affinity between monolayer and gas molecules. All adsorbed molecules altered the monolayer charge (see image), which is key for the gas-sensing ability of monolayer PtSe2.

Furthermore, their interactions were more effective with monolayer PtSe2 than its MoS2 or carbon-based graphene analogues. "It was exciting to explain this difference at a molecular orbital level," said Schwingenschlögl. Calculations of electron transport revealed the of PtSe2 as a gas sensor.


Explore further

Ultra-fast, ultra-sensitive PtSe2 gas sensors

More information: Muhammad Sajjad et al. Superior Gas Sensing Properties of Monolayer PtSe, Advanced Materials Interfaces (2017). DOI: 10.1002/admi.201600911
Citation: Ultrathin semiconducting sheet showing gas-responsive electronic properties for highly sensitive gas sensors (2017, April 14) retrieved 19 October 2019 from https://phys.org/news/2017-04-ultrathin-semiconducting-sheet-gas-responsive-electronic.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
8 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more