Physicists add amplifier to quantum communication toolbox

June 1, 2017

Quantum encryption using single photons is a promising technique for boosting the security of communication systems and data networks, but there are challenges in applying the method over large distances due to transmission losses. Using conventional optical amplification doesn't help as this disrupts the quantum link between sender and receiver, but physicists in Europe have found a solution – heralded photon amplification – and put it to the test.

The team, which includes researchers from the University of Geneva and Delft University of Technology, has demonstrated the technique over a simulated distance of 50 km, reporting its results in the journal Quantum Science and Technology. The work is published as part of a focus issue on the theme of cryptography and quantum networking.

"In classical communication, amplifiers are used to regenerate the signal. However, in the quantum regime this adds too much noise and destroys the coherence of the quantum states," explained Robert Thew, who co-leads the Quantum Technologies Group at the University of Geneva. "In our experiments, we overcome this limitation by exploiting a teleportation-based approach, which can be thought of as a lossless channel."

Today, when we send sensitive information over the internet, we rely on hard-to-solve mathematical expressions to protect our data from eavesdroppers. However, this approach is vulnerable to attack in the future as computers become more capable of finding answers to these numerical problems.

To get around the issue, physicists have been busy developing alternative schemes for secure key generation based not on , but on the quantum behaviour of single particles of light – photons. What's more, not only are these techniques impossible to crack through conventional means, they also warn of eavesdropping. These are so-called quantum keys.

As the researchers highlight, one of the major applications of heralded photon amplification is for so-called device-independent quantum key distribution – an approach aimed at certifying the security of a connection with minimal assumptions about the system itself and the technology that is exploited.

At the heart of the approach is the conceptually simple idea of sending a single photon on a 50/50 beam-splitter to generate entanglement. Repeating the process in succession and monitoring the output from single photon detectors provides the building blocks for studying quantum communication protocols.

Taking this a step further, it's possible to distribute the entanglement between two locations, generating a unique key for encrypting data transmission.

"The single photon, or path entangled, scheme we are using is also closely connected to quantum repeaters in terms of how entanglement is distributed in these long distance and fully-quantum network solutions," commented Thew. "Our next step is to develop compact and more efficient heralded sources that can be more easily deployed, allowing us to push these sorts of experiments into real-world networks."

Explore further: Unpolarized single-photon generation with true randomness from diamond

More information: F Monteiro et al. Heralded amplification of path entangled quantum states, Quantum Science and Technology (2017). DOI: 10.1088/2058-9565/aa70ad

Related Stories

Envisioning a future quantum internet

May 4, 2017

The quantum internet, which connects particles linked together by the principle of quantum entanglement, is like the early days of the classical internet – no one can yet imagine what uses it could have, according to Professor ...

New technique for creation of entangled photon states

February 15, 2017

Members of the Faculty of Physics at the Lomonosov Moscow State University have elaborated a new technique for creating entangled photon states. They have described their research in an article published in the journal Physical ...

First noiseless single photon amplifier

November 12, 2012

Research physicists have demonstrated the first device capable of amplifying the information in a single particle of light without adding noise.

Recommended for you

Quantum data takes a ride on sound waves

September 22, 2017

Yale scientists have created a simple-to-produce device that uses sound waves to store quantum information and convert it from one form to another, all inside a single, integrated chip.

A way to measure and control phonons

September 22, 2017

(Phys.org)—A team of researchers with the University of Vienna in Austria and Delft University of Technology in the Netherlands has developed a technique using photons for controlling and measuring phonons. In their paper ...

Gravitational waves may oscillate, just like neutrinos

September 21, 2017

(Phys.org)—Using data from the first-ever gravitational waves detected last year, along with a theoretical analysis, physicists have shown that gravitational waves may oscillate between two different forms called "g" and ...

Detecting cosmic rays from a galaxy far, far away

September 21, 2017

In an article published today in the journal Science, the Pierre Auger Collaboration has definitively answered the question of whether cosmic particles from outside the Milky Way Galaxy. The article, titled "Observation of ...

Physicists publish new findings on electron emission

September 21, 2017

Even more than 100 years after Einstein's explanation of photoemission the process of electron emission from a solid material upon illumination with light still poses challenging surprises. In the report now published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.