Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer

June 20, 2017, World Scientific Publishing
Schematic diagram of the europium doped gadolinium oxide nanorods and the silica coating to improve the biocompatibility. Invitro cytotoxicity analysis, invitro magnetic resonance imaging and optical imaging of the prepared samples were carried out. Credit: NANO

Researchers from PSG College of Technology, India have developed nano-contrast agents for magnetic resonance imaging (MRI) as well as optical imaging of cancer cells. This report will appear in the forthcoming issue of the journal NANO.

Cancer identification at the early stage remains a challenge to the researchers and clinicians. To diagnose the , various imaging modalities are being used. Among these modalities, MRI and are combined to develop dual modal imaging. Europium doped gadolinium oxide nanorods were synthesized by co-precipitation technique. Inorder to improve the biocompatibility, the nanoparticles were coated with silica. The invitro cytotoxicity results shows that the developed contrasts are not toxic at the lower concentrations. Invitro MR reveals that the bright contrasts are produced when the concentration is increased.

According to Dr. R. Arun Kumar, Associate Professor, PSG College of Technology, "The developed nano-contrast serves for both MRI and optical imaging. Therefore, the imaging of cancer with higher sensitivity and spatial resolution is possible. The mortality rate can also be reduced."

One of the authors (Ms. T. Gayathri) is grateful to TEQIP for providing financial assistance. Further research on the optimization of the size, concentration and morphology of the nanorods are being carried out for better results. Additional co-authors of the paper are T. Gayathri from PSG College of Technology, B. S. Panigrahi from Indira Gandhi Centre for Atomic Research, Kalpakkam and B. Devanand from PSG Hospitals.

Explore further: Scientists develop novel chemical 'dye' to improve liver cancer imaging

More information: T. Gayathri et al, Silica-Coated Europium-Doped Gadolinium Oxide Nanorods for Dual-Modal Imaging of Cancer Cells, Nano (2017). DOI: 10.1142/S1793292017500734

Related Stories

Better contrast agents based on nanoparticles

August 3, 2016

Scientists at the University of Basel have developed nanoparticles which can serve as efficient contrast agents for magnetic resonance imaging. This new type of nanoparticles produce around ten times more contrast than the ...

Compound boosts contrast of photoacoustic images

September 21, 2016

An agent for enhancing the contrast of photoacoustic imaging—an emerging imaging modality that involves 'listening' to the sound generated by laser light—has been developed by A*STAR researchers.

Recommended for you

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.

Zero field switching (ZFS) effect in a nanomagnetic device

March 16, 2018

An unexpected phenomenon known as zero field switching (ZFS) could lead to smaller, lower-power memory and computing devices than presently possible. The image shows a layering of platinum (Pt), tungsten (W), and a cobalt-iron-boron ...

Imaging technique pulls plasmon data together

March 16, 2018

Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.