Exciting new material uses solar energy to remove man-made dye pollutants from water

June 29, 2017
Powders of tantalum nitride nanoparticles (left), tungsten oxide nanowires (centre) and the tantalum nitride/tungsten oxide composite (right). Credit: Daniel Jones/Swansea University

A novel composite material has been developed by scientists in the Energy Safety Research Institute (ESRI) at Swansea University which shows promise as a catalyst for the degradation of environmentally-harmful synthetic dye pollutants, which are released at a rate of nearly 300,000 tonnes a year into the world's water.

This novel, non-hazardous photocatalytic material effectively removes dye pollutants from water, adsorbing more than 90 % of the dye and enhancing the rate of dye breakdown by almost ten times using visible light.

The researchers, led by Dr. Charles W. Dunnill and Dr. Daniel Jones at the Energy Safety Research Institute in Swansea University, reported their discovery in the Nature open access journal Scientific Reports.

By heating the reaction mixture at high pressures inside a sealed container, the composite is synthesized by growing ultra-thin "nanowires" of tungsten oxide on the surface of tiny particles of tantalum nitride. As a result of the incredibly small size of the two material components - both the tantalum nitride and tungsten oxide are typically less than 40 billionths of a metre in diameter - the composite provides a huge surface area for dye capture.

The material then proceeds to break the dye down into smaller, harmless molecules using the provided by sunlight, in a process known as "photocatalytic degradation". Having removed the harmful dyes, the catalyst may simply be filtered from the cleaned water and reused.

Vials containing the Rhodamine B test dye used in the study, both before (left) and after (right) photocatalytic degradation by the composite under white light illumination. Credit: Daniel Jones/Swansea University

While the photocatalytic degradation of dyes has been investigated for several decades, it is only relatively recently that researchers have developed materials capable of absorbing the visible part of the solar spectrum - other materials, such as titanium dioxide, are also able to break down dyes using solar energy, but their efficiency is limited as they only absorb higher energy, ultra-violet light. By making use of a much greater range of the spectrum, materials such as those used by the ESRI team at Swansea University team are able to remove pollutants at a far superior rate.

Both of the materials used in the study have attracted significant interest in recent years. Tungsten oxide, in particular, is considered one of the most promising materials for a range of photocatalytic applications, owing to its high electrical conductivity, chemical stability and surface activity, in addition to its strong light absorbance. As a low band-gap semiconductor, tantalum nitride is red in colour due to its ability to absorb almost the entire spectrum of , and therefore extracts a high amount of energy from sunlight to power the degradation processes.

However, the true potential of the two materials was only realised once they were combined into a single composite. Due to the exchange of electrons between the two materials, the test dye used within the study was broken down by the composite at around double the rate achieved by tantalum nitride on its own, while alone was shown to be incapable of dye degradation. In contrast to other leading photocatalytic materials, many of which are toxic to both humans and aquatic life, both parts of the composite are classed as non-hazardous .

The scientists responsible for the study believe that their research provides just a taster of the material's potential. "Now that we've demonstrated the capabilities of our composite, we aim to not just improve on the material further, but to also begin work on scaling up the synthesis for real-world application." said Dr. Jones. "We're also exploring its viability in other areas, such as the photocatalysed splitting of water to generate hydrogen."

Explore further: Solar material for producing clean hydrogen fuel

More information: Daniel R. Jones et al, Active removal of waste dye pollutants using Ta3N5/W18O49 nanocomposite fibres, Scientific Reports (2017). DOI: 10.1038/s41598-017-04240-4

Related Stories

Recommended for you

More efficient separation of methane and CO2

October 18, 2017

To make natural gas and biogas suitable for use, the methane has to be separated from the CO2. This involves the use of membranes, filters that stop the methane and allow the CO2 to pass through. Researchers at KU Leuven ...

A new way to harness wasted methane

October 17, 2017

Methane gas, a vast natural resource, is often disposed of through burning, but new research by scientists at MIT could make it easier to capture this gas for use as fuel or a chemical feedstock.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rrrander
not rated yet Jul 02, 2017
Asia is the largest source of air, water and land pollution. Asian rivers are so choked with plastic waste in some places you can't see the water. This will not be changing.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.