Discovery could lead to design of next-generation antibiotics

Antibiotic resistance is a growing global health threat. So much so that a 2014 study commissioned by the Prime Minister of the United Kingdom predicted that, if the problem is left unchecked, in less than 35 years more people will die from antibiotic resistant superbugs than from cancer. It is critical that researchers develop new antibiotics informed by knowledge of how superbugs are resistant to this medication.

To help on this front, in a new paper published in the journal Structure, researchers from McGill University present in atomic detail how specific bacterial enzymes, known as kinases, confer to macrolide , a widely used class of antibiotics and an alternative medication for patients with penicillin allergies. The study shows for the first time how these kinases recognize and chemically destroy macrolide antibiotics.

A discovery seven years in the making

While these kinases were known previously to scientists, uncovering precisely how they work at a chemical and structural level was not an easy process. "In 2009 we began cloning and trying to produce large amounts of these enzymes for our studies," explains Dr. Albert Berghuis, Chair of the Department of Biochemistry at McGill University's Faculty of Medicine and the study's senior author. After over a year of tweaking the process to assemble enough material, the next step was trying to make "kinase" crystals, similar to sugar crystals. These were then irradiated with X-rays at the Canadian Light Source in Saskatoon.

It took an additional three years to generate these crystals and analyze the data from Saskatchewan. "This finally provided us with an atomic view of the kinases and how they bind different macrolide antibiotics," Dr. Berghuis says. Yet this atomic level image was analogous to a picture of a complex machine that incorporates unfamiliar technology, he adds. The image didn't explain how that machine actually works. As a result, almost three more years were required to figure out how the different parts of the kinase confer resistance to different macrolide antibiotics.

Leveraging this new knowledge in future drug design

The researchers found that the enzymes have an impressive ability to confer resistance to many different macrolide antibiotics—the two enzymes that were studied in detail are essentially able to confer resistance to all macrolide antibiotics currently in use.

"In the end, we now know exactly how superbugs confer resistance to macrolides using these kinases," explains Dr. Berghuis. "This allows us to make small changes to these antibiotics such that the kinases can no longer interact with these drugs, which will make the next-generation antibiotics less susceptible to resistance by superbugs."

The next steps will be to develop these new and improved —, which Dr. Berghuis estimates will take another two to three years—and to then test them. But this is only one element needed to combat the growing prevalence of superbugs. "Antibiotic resistance is a multi-faceted problem, and our research is one aspect that should be placed in the context of other components, such as curtailing the over-use of antibiotics," notes Dr. Berghuis. "Only when a comprehensive multi-pronged strategy is used can we hope to successfully address this global health threat."

More information: Desiree H. Fong et al, Structural Basis for Kinase-Mediated Macrolide Antibiotic Resistance, Structure (2017). DOI: 10.1016/j.str.2017.03.007

Journal information: Structure

Provided by McGill University

Citation: Discovery could lead to design of next-generation antibiotics (2017, May 3) retrieved 24 April 2024 from https://phys.org/news/2017-05-discovery-next-generation-antibiotics.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

It's false to believe that antibiotic resistance is only a problem in hospitals – GP surgeries are seeing it too

109 shares

Feedback to editors