Simple technique produces stronger polymers

April 24, 2017 by Anne Trafton, Massachusetts Institute of Technology
Researchers have found a new approach for reducing the number of loops (red) in a polymer. The method could offer an easy way for manufacturers of industrially useful materials such as plastics or gels to strengthen their materials. Credit: Massachusetts Institute of Technology

Plastic, rubber, and many other useful materials are made of polymers—long chains arranged in a cross-linked network. At the molecular level, these polymer networks contain structural flaws that weaken them.

Several years ago, MIT researchers were the first to measure certain types of these defects, called "loops," which are caused when a chain in the binds to itself instead of another chain. Now, the same researchers have found a simple way to reduce the number of loops in a and thus strengthen made from polymers.

To achieve this, the researchers simply add one of the components of the polymer network very slowly to a large quantity of the second component. Using this approach, they were able to cut the number of loops in half, in a variety of different polymer network structures. This could offer an easy way for manufacturers of industrially useful materials such as plastics or gels to strengthen their materials.

"Just by changing how fast you add one component to the other, you can improve the mechanical properties," says Jeremiah A. Johnson, the Firmenich Career Development Associate Professor of Chemistry at MIT and the senior author of the paper.

MIT graduate student Yuwei Gu is the first author of the paper, which appears in the Proceedings of the National Academy of Sciences the week of April 24.

Other authors are MIT associate professor of chemical engineering Bradley Olsen; MIT graduate student Ken Kawamoto; former MIT postdocs Mingjiang Zhong and Mao Chen; Case Western Reserve University Assistant Professor Michael Hore; Case Western Reserve graduate student Alex Jordan; and former MIT visiting professor and Case Western Reserve Associate Professor LaShanda Korley.

Controlling loops

In 2012, Johnson's group devised the first way to measure the number of loops in a polymer network and validated those results with theoretical predictions from Olsen. The researchers found that the loops can make up about 9 percent to nearly 100 percent of the network, depending on the concentration of polymer chains in the starting material and other factors.

A few years later, Johnson and Olsen developed a way to calculate how much these loops weaken a material. In their latest work, they set out to reduce loop formation, and to achieve this without changing the composition of the materials.

"The goal we set for ourselves was to take the same set of precursors for a material that one would normally use, and, using the exact same precursors under the same conditions and at the same concentration, make a material with fewer loops," Johnson says.

In this paper, the researchers first focused on a type of polymer structure known as a star polymer network. This material has two different building blocks: a star with four identical arms, known as "B4," and a chain known as "A2." Each molecule of A2 attaches to the end of one of the B4 arms. However, during the typical synthesis process, when everything is mixed together at once, some of the A2 chains end up binding to two of the B4 arms, forming a loop.

The researchers found that if they added B4 very slowly to a solution of A2, each of the B4 arms would quickly react with a single molecule of A2, so there was less opportunity for A2 to form loops.

After a few hours of slowly adding half of the B4 solution, they added the second half all at once, and the star-shaped subunits joined together to form a cross-linked network. This material, the researchers found, had about half as many loops as the same material produced using the traditional synthesis process.

Depending on how many loops were in the original material, this "slow then fast" strategy can improve the material's strength by as much as 600 percent, Johnson says.

Better products

The researchers also tried this technique with four other types of polymer network synthesis reactions. They were not able to measure the number of loops for all of those types of polymers, but they did find similar improvements in the strength of the materials.

This approach could potentially help to improve the strength of any material made from a gel or other cross-linked polymer, including plastics, membranes for water purification, adhesives made of epoxy, or hydrogels such as contact lenses.

Johnson's lab is now working on applying this strategy to a variety of materials, including gels used to grow cells for tissue engineering.

Explore further: New theory overcomes a longstanding polymer problem

More information: Yuwei Gu el al., "Semibatch monomer addition as a general method to tune and enhance the mechanics of polymer networks via loop-defect control," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1620985114

Related Stories

New theory overcomes a longstanding polymer problem

September 15, 2016

All polymers have a distinctive degree of elasticity—how much they will stretch when a force is applied. However, for the past 100 years, polymer scientists have been stymied in their efforts to predict polymers' elasticity, ...

Chemists create adaptable metallic-cage gels

November 17, 2015

MIT chemists have created a new material that combines the flexibility of polymer gels with the rigid structure provided by metal-based clusters. The new gels could be well-suited for a range of possible functions, including ...

Technique enables adaptable 3-D printing

January 13, 2017

Three-dimensional printing technology makes it possible to rapidly manufacture objects by depositing layer upon layer of polymers in a precisely determined pattern. Once these objects are completed, the polymers that form ...

New insights into how gels form

July 11, 2016

Gels are found in wide range of products that we use on a day-to-day basis. But what gives gels their solid properties? What stops the particles that they are made up of being able to move like they would in a liquid? A team ...

Recommended for you

First microarrayed 3-D neuronal culture platform developed

November 14, 2018

Neuronal development is often regulated by the graded distribution of guidance molecules, which can either attract or repel the neuronal migration or neurite projection when presented in a format of concentration gradients, ...

Synthetic molecule invades double-stranded DNA

November 12, 2018

Carnegie Mellon University researchers have developed a synthetic molecule that can recognize and bind to double-stranded DNA or RNA under normal physiological conditions. The molecule could provide a new platform for developing ...

Scientists bring polymers into atomic-scale focus

November 12, 2018

From water bottles and food containers to toys and tubing, many modern materials are made of plastics. And while we produce about 110 million tons per year of synthetic polymers like polyethylene and polypropylene worldwide ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.