Tiny nanoclusters could solve big problems for lithium-ion batteries

February 21, 2017 by Liz Ahlberg Touchstone
Illinois professor Prashant Jain's research group found that ultrasmall nanoclusters of copper selenide could make superionic solid electrolytes for next-generation lithium-ion batteries. Credit: L. Brian Stauffer

As devices become smaller and more powerful, they require faster, smaller, more stable batteries. University of Illinois chemists have developed a superionic solid that could be the basis of next-generation lithium-ion batteries.

Chemistry professor Prashant Jain and graduate students Sarah White and Progna Banerjee described the material - ultrasmall nanoclusters of copper selenide - in the journal Nature Communications.

"Now that we're seeing this nanoelectronics boom, we need tiny batteries that can be put on a chip, and that can't happen with liquid electrolytes," Jain said. "We are using nanostructured materials to achieve the properties at the heart of lithium-ion technology. They have much more thermal and mechanical stability, there are no leakage issues, and we can make extremely thin electrolyte layers so we can miniaturize batteries."

Standard and other ionic batteries are filled with a liquid electrolyte that the lithium ions move through. The ions flow one direction when the battery is being used, and the opposite direction when the battery is charged. However, liquid electrolytes have several drawbacks: They require volume, degrade as the battery cycles, leak and are highly flammable, which has led to explosions in phones, laptops and other devices. Though solid electrolytes are considerably more stable, ions move through them much more slowly, making them less efficient for battery applications.

The copper selenide nanocluster electrolyte combines the best of both liquid and solid electrolytes: It has the stability of a solid, but ions easily move through it like a liquid. Copper selenide is known to be superionic at high temperatures, but the tiny nanoclusters are the first demonstration of the material being superionic at .

The researchers discovered this superionic property by accident while investigating copper selenide's surface reactivity. They noticed that ultrasmall nanoclusters - about 2 nanometers in diameter - looked very different from larger copper selenide nanoparticles in an electron microscope.

"That was our first hint that they have different structures," Jain said. "We investigated further, and we realized that these small clusters are actually semiliquid at room temperature."

The reason for the semiliquid, superionic property is the special structure of the nanoclusters, Jain said. The much larger selenium ions form a crystal lattice, while the smaller ions move around them like a liquid. This crystal structure is a result of internal strain in the clusters.

"With around 100 atoms, these nanoclusters are right at the interface of molecules and nanoparticles," Jain said. "Right now, the big push is to make every nanoparticle in a sample exactly the same size and shape. It turns out with these clusters, every single cluster is exactly the same structure. Somehow, at this size, the electronic structure of the material is so stable that every single cluster has the same arrangement of atoms."

The researchers are working to incorporate the nanoclusters into a battery, measure the conductivity of lithium ions and compare the performance with existing solid-state electrolytes and liquid electrolytes.

Explore further: Solid electrolytes open doors to solid-state batteries

More information: Sarah L. White et al, Liquid-like cationic sub-lattice in copper selenide clusters, Nature Communications (2017). DOI: 10.1038/ncomms14514

Related Stories

Solid electrolytes open doors to solid-state batteries

March 22, 2016

Japanese scientists have synthesized two crystal materials that show great promise as solid electrolytes. All-solid-state batteries built using the solid electrolytes exhibit excellent properties, including high power and ...

Study paves way for larger, safer lithium ion batteries

January 23, 2013

(Phys.org)—Looking toward improved batteries for charging electric cars and storing energy from renewable but intermittent solar and wind, scientists at Oak Ridge National Laboratory have developed the first high-performance, ...

Melting, coating, and all-solid-state lithium batteries

January 1, 2016

The joint research team of Prof. Yoon Seok Jung (UNIST, School of Energy and Chemical Engineering) and Prof. Seng M. Oh (Seoul National University) discovered a new way to develop all-solid-state lithium batteries without ...

Re-energizing the lithium-ion battery

November 23, 2016

High costs, slow recharging rates, and limited lifetimes restrict the utility of lithium-ion batteries for electric vehicles, storing electricity from wind or solar power, and other applications. Scientists are resolving ...

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(Phys.org)—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

Sugar-coated nanomaterial excels at promoting bone growth

June 19, 2017

There hasn't been a gold standard for how orthopaedic spine surgeons promote new bone growth in patients, but now Northwestern University scientists have designed a bioactive nanomaterial that is so good at stimulating bone ...

3-in-1 device offers alternative to Moore's law

June 14, 2017

In the semiconductor industry, there is currently one main strategy for improving the speed and efficiency of devices: scale down the device dimensions in order to fit more transistors onto a computer chip, in accordance ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.