Rainbow dyes add greater precision to fight against 'superbugs'

February 16, 2017, Indiana University
The study employed bacteria of the genus Bacillus to investigate the mechanics of cellular division in the microorganism. Credit: Creative Commons

A study reported Feb. 17 in the journal Science led by researchers at Indiana University and Harvard University is the first to reveal in extreme detail the operation of the biochemical clockwork that drives cellular division in bacteria.

The discovery, made possible through a revolutionary method used to color developed at IU, is an important step forward in research on bacterial growth and could inform efforts to develop drugs that combat .

Globally, antibiotic-resistant bacteria, or "superbugs," pose a major risk to human health. The World Health Organization estimates about 480,000 people develop multi-drug resistant tuberculosis each year. In the U.S., the Centers for Disease Control estimates 1 in 4 hospital-acquired infections in long-term patients are caused by six major strains of the bugs.

"This is the first study to 'connect the dots' between each part of the cell involved in bacterial cellular division," said Yves Brun, the Clyde Culbertson Professor of Biology in the IU Bloomington College of Arts and Sciences' Department of Biology, who is an author on the study. "We've finally closed the circle on this mechanism and opened the door to more precise methods in the fight against antibiotic-resistant bacteria.

"If you understand how an engine works, you can shut it down by removing a single part," Brun said. "You no longer need to throw a hammer into the works to destroy it."

Early antibiotics like penicillin function like a hammer: a blunt instrument that destroys the bacterial cell in the midst of division by tricking cell wall-making enzymes called penicillin-binding proteins, or PBPs, into binding to the drug rather than the building blocks of the cell walls, causing the walls to breach and the cells to explode.

Other parts of the cell that drive bacterial division include cytoskeletal proteins, called FtsA and FtsZ, which form skeleton-like fibers inside cells to direct construction of the cell wall. All three elements must coordinate to build a cell wall in the middle of the cell to ensure the material inside doesn't escape after it splits in half.

The fact that these three parts of the cell play a role in is known, but the new study is the first to show exactly how they coordinate. Essentially, Brun said, FtsZ acts as a "foreman" that directs the movement of PBP "workers" as they construct a cell wall.

Top image: The use of multi-colored dyes to observe cellular division in bacteria reveals that the growth of the cell wall moves inward from the blue edge of the bacterium to the middle, in green, and center, in red. Lower image: A side view of the bacterium shows this "bull's-eye pattern" at the division site. Credit: Yen-Pang Hsu

The researchers were able to detect the action with high-tech, multi-colored dyes called fluorescent D-amino acids, or FDAAs, discovered five years ago in the lab of Michael VanNieuwenhze, professor in the IU Bloomington College of Arts and Sciences' Department of Chemistry, who is a co-author on the study.

"The application of different colors of these dyes during the construction process revealed a 'bull's-eye pattern,' indicating the circular wall is built from the outer edge of the cell inward to the center," VanNieuwenhze said.

The study also solves another mystery: How do FtsZ molecules build the wall? The researchers found that FtsZ—which is arrayed in a biochemical chain called a filament—constantly loses a molecule at one end and gains a molecule at the other end, resulting in a circular motion around the cell's edge described as "treadmilling."

IU researchers chemically labeled the cells for analysis. Harvard scientists performed the experiments that showed the motion of the FtsZ and PBP proteins inside the cell.

The subject of a U.S. patent filed by the IU Research and Technology Corp., FDAA dyes have played an important part in dozens of other scientific papers on bacteria since 2012. VanNieuwenhze's lab also has about 50 material transfer agreements with researchers across the globe to provide access to the tool.

The creation of the dyes at IU was led by Erkin Kuru, a former Ph.D. student in the labs of VanNieuwenhze and Brun who is currently a research fellow at Harvard. Kuru and Yen-Pang Hsu, a IU Ph.D. student also in the labs of VanNieuwenhze and Brun, are co-authors on the study.

"This is the first time we've been able to observe cell division as a dynamic process—that is, a process occurring over time," Kuru said. "This wasn't possible before since we lacked the tools to see it."

Hsu added that "the visualization of these cell structures is no small task when you consider the organism that contains them is less than a micrometer—or one-thousand of a millimeter—wide. We wouldn't have been able to measure the fluorescent patterns in these without the technology at the IU Light Microscopy Imaging Center."

Explore further: Filming bacterial life in multicolor as a new diagnostic and antibiotic discovery tool

More information: "Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division" Science, science.sciencemag.org/cgi/doi … 1126/science.aak9973

Related Stories

Lock-out on the building site

February 8, 2017

Ethambutol has long been part of the standard therapy for tuberculosis. Ludwig Maximilian University of Munich researchers now describe how the antibiotic acts on the bacterium that causes the disease: It specifically inhibits ...

Unconventional cell division in the Caribbean Sea

October 11, 2016

Most bacteria divide by placing a protein called FtsZ at the division site. Traditionally, it was thought that FtsZ must organize into a ring in order to recruit a dozen of other proteins and together with them exert an homogeneous ...

Recommended for you

Dragonfly enzymes point to larger evolutionary dynamics

May 24, 2018

Although evolution has left dragonflies virtually unchanged for roughly 300 million years, new research by a UTM biologist reveals that understanding small physiological activities in these insects could reveal a deeper understanding ...

Team makes breakthrough in synthetic genome rearrangement

May 24, 2018

A synthetic biology team at Tianjin University (TJU) has reported new methods and strategies for genome rearrangement and accelerated the evolution of yeast strains with their three latest studies published in Nature Communications ...

The path to success for fish sperm

May 24, 2018

In many animals, males pursue alternative tactics when competing for the fertilization of eggs. Some cichlid fishes from Lake Tanganyika breed in empty snail shells, which may select for extremely divergent mating tactics. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.