Researchers find new clues for nuclear waste cleanup

February 23, 2017 by Tina Hilding, Washington State University
Washington State University graduate student Jamie Weaver has unearthed new information about technitium-99, a hard-to-remediate byproduct of plutonium production. Credit: Washington State University

A Washington State University study of the chemistry of technetium-99 has improved understanding of the challenging nuclear waste and could lead to better cleanup methods.

The work is reported in the journal Inorganic Chemistry. It was led by John McCloy, associate professor in the School of Mechanical and Materials Engineering, and chemistry graduate student Jamie Weaver. Researchers from Pacific Northwest National Laboratory (PNNL), the Office of River Protection and Lawrence Berkeley National Laboratory collaborated.

Technetium-99 is a byproduct of plutonium weapons production and is considered a major U.S. challenge for environmental cleanup. At the Hanford Site nuclear complex in Washington state, there are about 2,000 pounds of the element dispersed within approximately 56 million gallons of in 177 storage tanks.

The U.S. Department of Energy is in the process of building a at Hanford to immobilize hazardous nuclear waste in glass. But researchers have been stymied because not all the technetium-99 is incorporated into the glass and volatilized gas must be recycled back into the melter system.

The element can be very soluble in water and moves easily through the environment when in certain forms, so it is considered a significant environmental hazard.

Credit: Washington State University

Because technetium compounds are challenging to work with, earlier research has used less volatile substitutes to try to understand the material's behavior. Some of the compounds themselves have not been studied for 50 years, said McCloy."The logistics are very challenging," he said.

The WSU work was done in PNNL's highly specialized Radiochemical Processing Laboratory and the radiological annex of its Environmental Molecular Sciences Laboratory.

The researchers conducted fundamental chemistry tests to better understand technetium-99 and its unique challenges for storage. They determined that the sodium forms of the element behave much differently than other alkalis, which possibly is related to its volatility and to why it may be so reactive with water.

"The structure and spectral signatures of these compounds will aid in refining the understanding of technetium incorporation into nuclear waste glasses," said McCloy.

The researchers also hope the work will contribute to the study of other poorly understood chemical compounds.

Explore further: Ancient glass-glued walls studied for nuke waste solutions

More information: Jamie Weaver et al, Chemical Trends in Solid Alkali Pertechnetates, Inorganic Chemistry (2017). DOI: 10.1021/acs.inorgchem.6b02694

Related Stories

Plutonium keeps its electrons close to home

September 15, 2016

Found in nuclear fuel and nuclear weapons, plutonium is an incredibly complex element that has far-ranging energy, security, and environmental effects. To understand plutonium, scientists at Pacific Northwest National Laboratory ...

Recommended for you

Ancient enzymes the catalysts for new discoveries

October 22, 2018

University of Queensland-led research recreating 450 million-year-old enzymes has resulted in a biochemical engineering 'hack' which could lead to new drugs, flavours, fragrances and biofuels.

New algorithm can more quickly predict LED materials

October 22, 2018

Researchers from the University of Houston have devised a new machine learning algorithm that is efficient enough to run on a personal computer and predict the properties of more than 100,000 compounds in search of those ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.