Will androids dream of quantum sheep?

February 13, 2017
Quantum replicants of responsive systems can be more efficient than classical models, researchers at the Centre for Quantum Technologies in Singapore have found, because classical models have to store more past information than is necessary to simulate the future. This conceptual artist's illustration suggests the difference in resources required between a classical (green) and quantum (blue) simulation. Credit: Mile Gu and Jayne Thompson / Centre for Quantum Technologies, Singapore

Quantum replicants of responsive systems can be more efficient than classical models, say researchers from the Centre for Quantum Technologies in Singapore, because classical models have to store more past information than is necessary to simulate the future. They have published their findings in npj Quantum Information.

The word 'replicant' evokes thoughts of a sci-fi world where society has replaced common creatures with artificial machines that replicate their behaviour. Now researchers from Singapore have shown that if such machines are ever created, they'll run more efficiently if they harness theory to respond to the environment.

This follows the findings of a team from the Centre for Quantum Technologies (CQT), published 10 February in npj Quantum Information. The team investigated 'input-output processes', assessing the mathematical framework used to describe arbitrary devices that make future decisions based on stimuli received from the environment. In almost all cases, they found, a quantum device is more efficient because classical devices have to store more past information than is necessary to simulate the future.

"The reason turns out to be 's lack of a definitive reality," says co-author Mile Gu, an Assistant Professor at the Nanyang Technological University, Singapore, who is affiliated with CQT. "Quantum mechanics has this famous feature where some properties of quantum particles are not just unknown before they are measured, but fundamentally do not exist in a definitive state prior to the act of measurement," he says. The physics only specifies the probabilities the system collapses to each possible value once the measurement is performed. That lets the quantum system, in a sense, do more with less.

Co-author Jayne Thompson, a Research Fellow at CQT, explains further: "Classical systems always have a definitive reality. They need to retain enough information to respond correctly to each possible future stimulus. By engineering a so that different inputs are like different quantum measurements, we can replicate the same behaviour without retaining a complete description of how to respond to each individual question." Andrew Garner, another Research Fellow at CQT, and Vlatko Vedral, a Principal Investigator at CQT and Professor at the University of Oxford, also contributed to the paper.

Quantum replicants of responsive systems can be more efficient than classical models, researchers at the Centre for Quantum Technologies in Singapore have found, because classical models have to store more past information than is necessary to simulate the future. This conceptual artist's illustration suggests the difference in resources required between a classical (green) and quantum (blue) simulation. Credit: Mile Gu and Jayne Thompson / Centre for Quantum Technologies, Singapore

The findings advance earlier work. In 2012, Vedral, Gu and others proved a similar result for another class of problems known as stochastic processes. These are systems that have dynamics independent of external stimuli. That result was just put to experimental test by collaborators from Griffith University in Australia. They constructed a real life quantum simulator of a stochastic process [Science Advances 3, e1601302 (2017)].

This proof-of-principle experiment used just two particles of light. The first simulations of input-output processes will probably be small-scale too, but Gu hopes to ultimately see simulating how complex systems will react and evolve in real life situations.

"Input-output processes are ubiquitous in nature," says Vedral. "Every entity is essentially an input-output process, from neural networks that process past inputs to make future decisions, to seeds that determine when to germinate based on ," he says.

"Humans have long been fascinated with the idea of replicating nature through machines, from Leonardo da Vinci's famous mechanical knight to speculative fiction of future androids like Philip K. Dick's 'Do Androids Dream of Electric Sheep' that inspired the Blade Runner film," Gu says. "Perhaps androids in the future, engineered by an advanced civilization obsessed with efficiency, will instead dream of quantum sheep."

Explore further: Quantum RAM: Modelling the big questions with the very small

More information: Jayne Thompson et al, Using quantum theory to simplify input–output processes, npj Quantum Information (2017). DOI: 10.1038/s41534-016-0001-3

Related Stories

Quantum RAM: Modelling the big questions with the very small

February 3, 2017

When it comes to studying transportation systems, stock markets and the weather, quantum mechanics is probably the last thing to come to mind. However, scientists at Australia's Griffith University and Singapore's Nanyang ...

How quantum physics could make 'The Matrix' more efficient

March 29, 2012

Researchers have discovered a new way in which computers based on quantum physics could beat the performance of classical computers. The work, by researchers based in Singapore and the UK, implies that a Matrix-like simulation ...

The exciting new age of quantum computing

October 25, 2016

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Discord strikes the right quantum note

August 6, 2012

(Phys.org) -- Scientists have taken a quantum leap forward towards future computing after discovering that ‘background interference’ in quantum-level measurements, may be the very thing they need to unlock the potential ...

Recommended for you

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

Terahertz spectroscopy goes nano

October 19, 2017

Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy—a technique used to study a wide variety of materials—into the nano-world.

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Steelwolf
1 / 5 (1) Feb 13, 2017
The quote from the Title of Philip K. Dick's Blade Runner may just off from being a copyright infringement. The other title for the book is Do Androids Dream of Electric Sheep.

The LEAST you could have done is to tip a nod to the Author in this case!
PandasforScience
5 / 5 (2) Feb 14, 2017
Looked like the article mentioned Philip Dick's at the end?
Quantus
not rated yet Feb 15, 2017
A nightmare for an android is being haunted by Schrödinger's cat.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.