Role of thrust and drag clarified for swimming microorganisms

January 24, 2017, American Institute of Physics
A snapshot of a linear chain of three little spheres and a big sphere. The individual spheres perform relative oscillatory motion along the axis. The fluid converts the internal relative motion into motion of the center of mass. Credit: Felderhof

For years, B. Ubbo Felderhof, a professor at the Institute for Theoretical Physics at Germany's RWTH Aachen University, has explored the mechanisms that fish and microorganisms rely on to propel themselves. Flying birds and insects face similar challenges propelling themselves, but without the luxury of buoyancy these creatures also contend with overcoming gravity to stay aloft.

Over 20 years ago, Felderhof was studying the theory behind the "swimming" of microorganisms, described by the friction interactions between the microbodies and their surrounding fluid. Because of the small mass of many such microorganisms like bacteria, such inertial forces could be neglected in the description. For slightly larger organisms, however, this was not the case.

Felderhof has since created mechanical models to more fully develop the theory, consisting of linear chains of spheres connected by springs and immersed in fluid. Here he took into account that the interaction with the fluid involves both friction and inertia, since the effect of mass can't be neglected for these larger structures.

As Felderhof now reports in Physics of Fluids, he's just pushed this work even further by addressing what happens in the case of adding one sphere to the chain that's much larger than the other spheres.

Felderhof studies structures of spheres because the effect of friction and fluid inertia on the motion of a single sphere is fairly well known. With multiple spheres, however, the picture is more complex and has to take into account positions and orientations. "For several spheres, there is the complication of due to interference of flow patterns," he said. "These hydrodynamic interactions depend on the relative positions of sphere centers."

If the relative positions of the spheres are varied periodically by applying an oscillating force on each of them, with the constraint that the total net force vanishes at any time, the system still sees movement. "In spite of the latter constraint, the set of spheres in general performs a net motion, which is called 'swimming,'" Felderhof said.

A mathematical formulation allows finding the optimum stroke—the combined applied forces—that yields the maximum average speed for a given power.

For this new work, Felderhof explored a linear chain of with one big, passive sphere, meaning the applied force on that sphere vanishes. "The big sphere is called the 'cargo,'" he said. "Think of it as a large body with small moving appendages, or of a boat being pushed or pulled by a small propeller."

His work provides an important conceptual clarification of flow theory. "In popular explanations of swimming and flying, we're told that speed is achieved by a balance of thrust and drag," Felderhof said. "My model calculations, however, show that the mean thrust and drag both vanish when averaged over a period. The effect is more subtle. Interactions of body and fluid are such that periodic shape deformations of the body lead to a net motion relative to the fluid, even though the net thrust vanishes."

Much of the previous work on swimming has concentrated on either the friction-dominated limit, valid for microorganisms, or on the inertia-dominated limit, valid for large animals. "In my model, both friction and inertia play a role so that swimming can be studied in the intermediate regime, where both effects are important," he said.

In terms of applications, the swimming linear chain model is particularly useful because of its slender structure and ability to travel through narrow tubes, such human veins.

"Biologists have already considered the possibility of drug transport via such means," Felderhof said. "And now we've developed a mathematical model that allows optimization of deformations of the body, which leads to maximum speed for given power. This method isn't limited to linear chains, so we can envision applying it to more complicated structures in future work."

First, Felderhof points out that it is important to validate the model by comparison with computer simulations and subsequent experiments, which is beyond his focus, so he hopes other researchers will pursue it.

"Friction and inertia aren't the only effects that can lead to swimming," Felderhof said. "Flapping leads to vortex shedding and possibly a 'street' of vortices. This effect is absent from my model, but may be essential for the swimming of some fish and for flying birds. It will be of value to establish the relative importance of friction, inertia, and vortex shedding, but at present I don't see how this can be accomplished in analytical theory. Again, computer simulation would be helpful."

Explore further: Optimum inertial self-propulsion design for snowman-like nanorobot

More information: "Swimming of a nonlinear chain with a cargo in an incompressible viscous fluid with inertia," Physics of Fluids, DOI: 10.1063/1.4973711

Related Stories

New active filaments mimic biology to transport nano-cargo

January 10, 2017

Inspired by micro-scale motions of nature, a group of researchers at the Indian Institute of Technology Madras and the Institute of Mathematical Sciences, in Chennai, India, has developed a new design for transporting colloidal ...

Amoeboid swimming - crawling in a fluid

December 4, 2013

Researchers from CNRS, Inserm, and Université Joseph Fourier - Grenoble have developed a particularly simple model that reproduces the swimming mechanism of amoebas. They show that, by changing shape, these single cell organisms ...

Recommended for you

How community structure affects the resilience of a network

June 22, 2018

Network theory is a method for analyzing the connections between nodes in a system. One of the most compelling aspects of network theory is that discoveries related to one field, such as cellular biology, can be abstracted ...

The pho­to­elec­tric ef­fect in stereo

June 22, 2018

In the photoelectric effect, a photon ejects an electron from a material. Researchers at ETH have now used attosecond laser pulses to measure the time evolution of this effect in molecules. From their results they can deduce ...

Water can be very dead, electrically speaking

June 21, 2018

In a study published in Science this week, the researchers describe the dielectric properties of water that is only a few molecules thick. Such water was previously predicted to exhibit a reduced electric response but it ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.