Mimicking bug eyes could brighten reflective signs and clothes

November 30, 2016, American Chemical Society
The structure of bug eyes (top) has inspired bright, vividly colored reflective materials (bottom). The structure of bug eyes (top) has inspired bright, vividly colored reflective materials (bottom). Credit: American Chemical Society

That bright, reflective coating used on road signs, bicycles and clothing are important safety measures at night. They help drivers get to their destinations while avoiding bicyclists and pedestrians in low-light conditions. Now, inspired by the structure of insect eyes, scientists have developed new materials that could improve the color and effectiveness of these safeguards. Their report appears in the ACS journal Langmuir.

Retroreflective materials, including some tapes and road paints, work by bouncing light back toward the , such as a car's headlights, making them bright and easy to see. Existing retroreflectors are usually made with glass microbeads and microprisms. Dyes, pigments or plastic layers are often added for color; however, they tend to reduce the reflection of light, and the colors can fade over time. Hongta Yang and colleagues turned to the of insects for a new way to address these limitations.

The researchers evenly coated an array of glass microspheres with smaller balls of silica. The result is a brilliantly colored, retroreflective material. The color can be adjusted by changing the size of the silica crystals, and brightness can be boosted by adding layers. At 250 nanometers and 40 layers deep, the crystals appeared bright green and reflected more light than commercial coatings with no color. In addition to boosting the brightness of objects for safety reasons, researchers say that by reflecting rather than absorbing light, the material could be applied to buildings to reduce the urban heat-island effect.

Explore further: Disordered nanonetwork produces robust and vibrant colors for vehicles, biomimetic tissues and camouflage 

More information: Kuan-Yi Tsao et al. Self-Assembled Hierarchical Arrays for Colored Retroreflective Coatings, Langmuir (2016). DOI: 10.1021/acs.langmuir.6b03329

Abstract
This study reports a self-assembly technology for fabricating retroreflection coatings with hierarchical nano-/microstructures, which are inspired by the binary periodic structures found in the compound eyes of insects. Silica colloidal crystals of adjustable thicknesses are assembled on encountering glass microbeads using a Langmuir–Blodgett-like approach in a layer-by-layer manner. The as-assembled hierarchical structures exhibit a brilliant color caused by Bragg diffraction from the crystalline lattice of silica colloidal crystals on glass microbeads. The resultant coating is capable of reflecting light in the opposite direction of the incident light. Moreover, the dependence of the silica particle size, the colloidal crystal thickness, and the incident angle on the retroreflective properties are investigated in this study.

Related Stories

Longhorn beetle inspires ink to fight counterfeiting

November 5, 2014

From water marks to colored threads, governments are constantly adding new features to paper money to stay one step ahead of counterfeiters. Now a longhorn beetle has inspired yet another way to foil cash fraud, as well as ...

Fluorescent ruby red roofs stay as cool as white

September 21, 2016

Elementary school science teaches us that in the sun, dark colors get hot while white stays cool. Now new research from Lawrence Berkeley National Laboratory (Berkeley Lab) has found an exception: scientists have determined ...

Recommended for you

A way to make cleaner metal-free perovskites at low cost

July 13, 2018

A team of researchers at Southeast University in China has found a way to make metal-free perovskites in a useable form. In their paper published in the journal Science, the group describes their technique and how well it ...

The secret sulfate code that lets the bad Tau in

July 13, 2018

Vampires can turn humans into vampires, but to enter a human's house, they must be invited in. Researchers at the UT Southwestern Medical Center, writing in the Journal of Biological Chemistry, have uncovered details of how ...

Bioengineers create pathway to personalized medicine

July 12, 2018

Engineering cellular biology, minus the actual cell, is a growing area of interest in biotechnology and synthetic biology. It's known as cell-free protein synthesis, or CFPS, and it has potential to provide sustainable ways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.