Research reveals unprecedented observations of how a hot molecule cools in a liquid

October 10, 2016, University of Bristol
Research reveals unprecedented observations of how a hot molecule cools in a liquid
A hot CN molecule cools in solution by collisions with solvent molecules that reduce both its speed and how quickly it is rotating. The three panels show schematic snapshots of this cooling at successively later times as the CN settles down from free movement to hindered motion that is restricted by the surrounding solvent molecules. Credit: Dr Michael Grubb (University of Bristol)

The most detailed exploration to date of how energy flows from a hot molecule into a surrounding liquid has been undertaken by a team of scientists at the University of Bristol.

Led by Professors Mike Ashfold and Andrew Orr-Ewing from the School of Chemistry, the research, published recently in Nature Chemistry, has significant implications for a fundamental understanding of the mechanisms of cooling and provides fresh insights into the extraordinarily complex behaviour of liquids.

If a hot object is dropped into a liquid such as water, it quickly cools and the liquid warms up until both have the same temperature.

This equilibration of temperatures occurs because the hot object loses to the surrounding liquid.

The energy is transferred by collisions between the molecules of the liquid and the submerged object, but is difficult to study because these collisions happen very quickly (typically in less than a trillionth of a second).

Using very short laser pulses, the Bristol team has been able to watch how energy flows from a hot object into a in unprecedented detail.

Professor Andrew Orr-Ewing said: "In our experiments, small dissolved molecules were given a very large amount of energy using a short burst of ultraviolet light.

"The energized molecules initially spin very fast and move with high speeds, but rapidly encounter molecules of the surrounding solvent.

"They ricochet off the solvent molecules and transfer energy in the process, so that they spin more and more slowly until they run out of excess energy. The process is much like a spinning top slowing down as it bounces off obstacles such as walls or furniture, but is over in much less than a billionth of a second."

The experimental measurements were reproduced using simulations run on a computer, which helped the Bristol team to understand the forces acting between the hot solute molecules and the surrounding solvent molecules.

Explore further: Chemistry in a trillionth of a second

More information: Michael P. Grubb et al. Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent, Nature Chemistry (2016). DOI: 10.1038/NCHEM.2570

Further details of the research in the Bristol group can be found at

Related Stories

Chemistry in a trillionth of a second

January 30, 2015

Chemists at the University of Bristol, in collaboration with colleagues at the Central Laser Facility at the Rutherford Appleton Laboratory (RAL) and Heriot-Watt University (HWU), can now follow chemical reactions in liquids ...

How solvent molecules cooperate in reactions

October 6, 2016

Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions. This has been shown by researchers studying the formation of an ether in pure solvents and in their ...

Energy jumps back and forth between molecules during transfers

October 4, 2016

The process of photosynthesis, through which plants convert sunlight into chemical energy, involves a carefully choreographed transfer of energy from molecule to molecule. Exactly how the energy is moved is not fully understood, ...

Solving the solvent mystery for better drug design

February 3, 2011

Scientists from the University of Bristol have been able to watch a chemical reaction happening in solution with more detail than ever before. This could lead to improved drug design for medical therapies and catalysts for ...

Structural memory of water persists on picosecond timescale

September 18, 2015

A team of scientists from the Max Planck Institute for Polymer Research (MPI-P) in Mainz, Germany and FOM Institute AMOLF in the Netherlands have characterized the local structural dynamics of liquid water, i.e. how quickly ...

Recommended for you

Photochemical deracemization of chiral compounds achieved

December 19, 2018

Enantiomeric molecules resemble each other like right and left hands. Both variants normally arise in chemical reactions. But frequently, only one of the two forms is effective in biology and medicine. Completely converting ...

Carbon fuels go green for renewable energy

December 18, 2018

For decades, scientists have searched for effective ways to remove excess carbon dioxide emissions from the air, and recycle them into products such as renewable fuels. But the process of converting carbon dioxide into useful ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.