Research into energy flow features on the cover of Nature Chemistry

October 27, 2011
Research into energy flow features on the cover of Nature Chemistry
The cover image shows an artistic impression of the flow of energy in the wake of the solution-phase bimolecular reaction between cyclohexane and the cyano radical. The more intense colours indicate fast energy exchange within the radical co-product solvent shell, whereas less intense colours indicate slower energy flow once the products have diffused away from one another within the solvent. Image by Becca Rose and David Glowacki

( -- 'Energy flow maps' which provide new insight into how chemical reactions work are described in a paper by Dr David Glowacki and colleagues at the University of Bristol in the November issue of Nature Chemistry.

Molecules are made out of that are attached to one another by (which can be compared to little elastic bands that hold the atoms together). In chemical reactions, undergo processes that break old bonds and make new ones, resulting in different products. The skill of the chemist lies in knowing which molecules to mix, under what conditions, to form the desired product.

Most of the time, molecules are not reacting: the elastic bands holding the atoms together remain intact, and the atoms undergo small jiggles and weak vibrations that arise from the small amount of that atoms have at any given temperature.  This state of weak vibrations is called thermal equilibrium.

Chemical reactions happen far from equilibrium, however.  They require large amounts of energy to be located in the atoms whose bonds are going to break, giving way to strong vibrations that cause the elastic bands to stretch and ultimately snap.  In the moments immediately after a reaction has occurred and a new bond is formed, there is a complementary situation, and the atoms in that particular new bond vibrate very strongly.

Most chemical reactions take place with reactant molecules embedded in a sea of unreactive liquid (or solvent) molecules.  Common solvents, including water and a number of organic liquids, play an important role in both shuffling energy to reacting molecules, and subsequently shuffling it away after reaction has occurred.  However, when chemists think about reactions in liquids, they tend to overlook the underlying energy shuffle that transports energy to and from the chemical reaction.  Instead, they focus on the equilibrium states that occur well before, and well after, a reaction occurs.

The study by Dr David Glowacki and colleagues in Bristol’s School of Chemistry provides fundamental microscopic insight into ultrafast laser experiments that track the energy levels of products formed one millionth of a millionth of a second after a chemical reaction.

Using state-of-the-art computational models run on Bristol’s BlueCrystal supercomputer, Dr Glowacki and colleagues were able to resolve the energy shuffle associated with individual bond making and breaking in liquids.  The unprecedented level of detail afforded by their study allowed them to construct a ‘map’ of how energy flows in the immediate wake of a chemical reaction.

Their ‘ map’ reveals clear shortcomings in the physical models commonly used to describe the energy shuffle occurring alongside .  The new insight afforded by such ‘energy flow maps’ has the scope to help chemists working in areas as diverse as biochemistry, pharmaceutical chemistry, polymer chemistry, and nanoscience.

This paper is featured on the cover of the November issue of (image by Becca Rose and Dr David Glowacki). It follows on from recent work featured on the cover of Science, and involves a collaboration between theoretical chemists Dr David Glowacki and Professor Jeremy Harvey, and experimental physical chemists led by Professor Andrew Orr-Ewing.

Explore further: Solving the solvent mystery for better drug design

More information: D. R. Glowacki, R. A. Rose, S. J. Greaves, A. J. Orr-Ewing, and J. N. Harvey, ‘Mapping ultrafast energy flow in the wake of solution phase bimolecular reactions’ Nature Chemistry, doi:10.1038/nchem.1154

Related Stories

Solving the solvent mystery for better drug design

February 3, 2011

Scientists from the University of Bristol have been able to watch a chemical reaction happening in solution with more detail than ever before. This could lead to improved drug design for medical therapies and catalysts for ...

New Direction for Hydrogen Atom Transfers

October 19, 2005

In the annals of chemistry, there are many examples of hydrogen atoms moving from metals to carbon atoms. But no one has ever directly observed the reverse reaction — hydrogen atoms moving from carbon to a metal — until ...

Understanding lethal synthesis

October 7, 2011

( -- The chemical reaction which makes some poisonous plants so deadly has been described by researchers at the University of Bristol in a paper published today in Angewandte Chemie.

Emory chemists reveal challenge to reaction theory

December 17, 2004

For nearly 75 years, transition-state theory has guided chemists in how they view the way chemical reactions proceed. Recent research by Emory University chemists is challenging the long-held theory, showing that in some ...

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.