Probing a mosquito protein for clues in the fight against Zika

September 7, 2016, American Chemical Society
Credit: American Chemical Society

As health departments around the U.S. boost efforts to combat Zika, scientists are working on new ways to kill the mosquitoes that carry the virus. One approach involves understanding the molecular mechanisms that keep the bugs alive so we can then undermine them. Scientists report in the ACS journal Biochemistry that they have revealed new structural insights on a key protein from Aedes aegypti, the mosquito species most often linked to the spread of Zika.

In February, the World Health Organization called for action against the disease after Brazil experienced a spike in the number of babies born with microcephaly, a condition characterized by an abnormally small head. Since then, the virus has been reported in more than 40 countries. Studies have shown that compounds that inhibit a protein called sterol carrier protein 2 (SCP2), which is involved in the transport of cholesterol and fats in insects, can kill Aedes aegypti larva. Kiran K. Singarapu and colleagues from CSIR - Indian Institute of Chemical Technology wanted to take a closer look at the structure of one of the protein's variants to help inform the development of future insecticides.

Using solution , a technique that yields molecular-level information about proteins, the researchers were able to describe the 3-D structure and dynamics of a SCP2 variant. The new insights could help scientists screen small-molecule libraries for insecticide candidates. In addition to curbing Zika, any resulting compound that stamps out Aedes aegypti could reduce cases of other illnesses—dengue fever, yellow fever and chikungunya—that the mosquito also carries.

Explore further: Brazil scientists: Culex mosquito not transmitting Zika

More information: Kiran Kumar Singarapu et al. Solution Nuclear Magnetic Resonance Studies of Sterol Carrier Protein 2 Like 2 (SCP2L2) Reveal the Insecticide Specific Structural Characteristics of SCP2 Proteins inMosquitoes, Biochemistry (2016). DOI: 10.1021/acs.biochem.6b00322

Abstract
Sterol carrier protein 2 like 2 from Aedes aegypti (AeSCP2L2) plays an important role in lipid transport in mosquitoes for its routine metabolic processes. Repeated unsuccessful attempts to crystallize ligand free SCP2L2 prompted us to undertake nuclear magnetic resonance (NMR) spectroscopy to determine its three-dimensional structure. We report here the three-dimensional structures and dynamics of apo-AeSCP2L2 and its complex with palmitate. The 15N heteronuclear single-quantum coherence spectrum of apo-AeSCP2L2 displayed multiple peaks for some of the amide resonances, implying the presence of multiple conformations in solution, which are transformed to a single conformation upon formation of the complex with plamitate. The three-dimensional structures of apo-AeSCP2L2 and palmitated AeSCP2L2 reveal an α/β mixed fold, with five β-strands and four α-helices, very similar to the other SCP2 protein structures. Unlike the crystal structure of palmitated AeSCP2L2, both solution structures are monomeric. It is further confirmed by the rotational correlation times determined by NMR relaxation times (T1 and T2) of the amide protons. In addition, the palmitated AeSCP2L2 structure contains two palmitate ligands, bound in the binding pocket, unlike the three palmitates bound in the dimeric form of AeSCP2L2 in the crystals. The relaxation experiments revealed that complex formation significantly reduces the dynamics of the protein in solution.

Related Stories

Brazil confirms mosquito as Zika vector

May 23, 2016

Brazilian scientists said Monday they have found the first hard evidence the Zika virus blamed for causing brain damage in hundreds of babies is carried by the Aedes aegypti mosquito.

Zika virus fight a 'long journey': WHO chief

February 23, 2016

The head of the World Health Organization warned Tuesday that the fight against Zika, a mosquito-transmitted virus linked to serious birth defects, will be long and complex.

Recommended for you

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

Hand-knitted molecules

January 18, 2019

Molecules are usually formed in reaction vessels or laboratory flasks. An Empa research team has now succeeded in producing molecules between two microscopically small, movable gold tips – in a sense as a "hand-knitted" ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

This computer program makes pharma patents airtight

January 17, 2019

Routes to making life-saving medications and other pharmaceutical compounds are among the most carefully protected trade secrets in global industry. Building on recent work programming computers to identify synthetic pathways ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.