Study explores thermoelectric screen printing

September 20, 2016, Boise State University
Credit: Boise State University

What if you could easily print a thin layer of material – for use anywhere – that would allow you to create flexible energy harvesters or coolers? That may soon be a reality.

Thermoelectric conversion is a solid-state and environmentally friendly energy conversion technology with broad applications that include solid-state cooling, energy harvesting and waste heat recovery.

Flexible thermoelectric devices are especially attractive for waste heat recovery along contoured surfaces and for energy harvesting applications to power sensors, biomedical devices and wearable electronics – an area experiencing exponential growth. However, obtaining low-cost, flexible and efficient thermoelectric materials is extremely difficult due to many materials and manufacturing challenges.

In work led by professor Yanliang Zhang at Boise State University, high-performance and low-cost flexible thermoelectric films and devices were fabricated by an innovative screen-printing process that allows for direct conversion of nanocrystals into flexible thermoelectric devices.

The precise control of the starting nanocrystals' shape and surface chemistry and the optimization of the nano-ink and screen-printing process are the key factors giving rise to unprecedented performances in the printed thermoelectric materials.

The paper on this work, "High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystalsis," is published on the Scientific Reports website. The collaboration with high-tech startup company ThermoAura, focusing on nanocrystal synthesis, also contributed to the success of this work.

Based on initial cost analysis, the screen-printed films can realize thermoelectric devices at 2-3 cents per watt, an order of magnitude lower than current state-of-the-art commercial devices. Such a cost reduction would make thermoelectrics a very competitive energy conversion technology that could tremendously open up the largely underexplored markets on .

This additive printing method not only will benefit thermoelectrics, but also result in a disruptive manufacturing approach for other electronic devices and energy conversion or storage technologies of ultralow cost and flexibility.

Zhang's vision on marrying additive manufacturing and advanced energy technology to enable major technology breakthroughs also has been recognized by a major federal funding agency. He recently received an infrastructure award from U.S. Department of Energy to invest an advanced additive printing equipment and establish state-of-the-art additive manufacturing capabilities at Boise State.

This new capability will enable students to perform cutting edge research on and their applications on printing sensors, flexible electronics and energy conversion and storage systems.

Explore further: New spin Seebeck thermoelectric device with higher conversion efficiency created

More information: Tony Varghese et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals, Scientific Reports (2016). DOI: 10.1038/srep33135

Related Stories

Electronic circuits printed at one micron resolution

August 31, 2016

A research team consisting of a group from National Institute for Materials Science (NIMS) International Center for Materials Nanoarchitectonics (MANA) and Colloidal Ink developed a printing technique for forming electronic ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

The taming of the light screw

March 22, 2019

DESY and MPSD scientists have created high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.