Physicist addresses international forum on thermoelectric energy

October 3, 2007

Energy lost from hot engines could save billions of dollars if it could be captured and converted into electricity via thermoelectric devices, Clemson University physicist Terry Tritt told scientists gathered in Dallas for the world-renowned NanoTX ’07 conference.

Tritt delivered an address at the Alan MacDairmid Memorial Nano Energy Summit on challenges in alternative energy, specifically thermoelectricity used to generate electrical energy from waste heat.

“Thermoelectric generators are currently used in NASA’s deep-space probes to convert the heat of radioactive elements to electrical energy, powering these systems for over 30 years,” Tritt said. “Thermoelectric energy conversion is a solid-state technology that is environmentally friendly. One of the more promising ‘down-to-earth’ applications lies in waste-heat recovery in cars.”

Tritt said more than 60 percent of the energy that goes into an automotive combustion cycle is lost, primarily to waste heat through the exhaust or radiator system.

“Even at the current efficiencies of thermoelectric devices, 7 to 8 percent, more than 1.5 billion gallons of diesel could be saved each year in the U.S. if thermoelectric generators were used on the exhaust of heavy trucks. That translates into billions of dollars saved,” Tritt said.

Clemson research focuses on developing higher-efficiency thermoelectric materials that could increase savings significantly. Research on the electrical and thermal properties of new materials could reduce the world’s reliance on fossil fuels and has shown promise with two classes of materials: low-dimensional systems for enhanced electrical properties and increased phonon scattering that leads to inherently low thermal conductivity.

Tritt heads up the Department of Energy’s Center of Excellence in Thermoelectric Materials Research at Clemson, one of the leading laboratories for thermoelectric materials in the world. The national center focuses on the next generation of thermoelectric materials for power conversion and refrigeration. Researchers in physics, materials science and chemistry screen promising new classes of materials in order to achieve higher-performance thermoelectric materials. DOE recently renewed the program with more than $1 million a year in research funding for the next three years.

Source: Clemson University

Explore further: Converting heat into electricity with pencil and paper

Related Stories

Converting heat into electricity with pencil and paper

February 19, 2018

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive ...

Turning background room temperature heat into energy

February 15, 2018

Every time we convert energy from one form to another, part of that energy is lost in the form of heat. Trying to efficiently get that energy back is very difficult once it is lost to the environment. Thermoelectric devices ...

System draws power from daily temperature swings

February 15, 2018

Thermoelectric devices, which can generate power when one side of the device is a different temperature from the other, have been the subject of much research in recent years. Now, a team at MIT has come up with a novel way ...

Novel methods of synthesizing quantum dot materials

January 25, 2018

For quantum dot (QD) materials to perform well in devices such as solar cells, the nanoscale crystals in them need to pack together tightly so that electrons can hop easily from one dot to the next and flow out as current. ...

Recommended for you

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

Using organoids to understand how the brain wrinkles

February 20, 2018

A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

NeilFarbstein
not rated yet Oct 03, 2007
Hybrid vehicles already combine internal combustion and electric power, thermoelectric recepture of heat enrgy can be fed back into the batteries or fuel cells increasing efficiency.
Ultra high strength materials will enable lowering fuel use too.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.