Nanovesicles in predictable shapes

August 25, 2016, Radboud University
Nanovesicles in predictable shapes
Figure 1. Shape transformation of the nanovesicles: disks (left), bowl shaped stomatocytes (middle) and rods (right). The vesicles have a typical size of 500 nanometres. All figures are also available in a large format. Credit: Radboud University

Beads, disks, bowls and rods: scientists at Radboud University have demonstrated the first methodological approach to control the shapes of nanovesicles. This opens doors for the use of nanovesicles in biomedical applications, such as drug delivery in the body. Nature Communications will publish these results on 25 August.

The shape of nanovesicles – called 'polymersomes' in jargon – in a solution varies at different compositions of that solution, scientist Roger Rikken and his colleagues at Radboud University discovered. "Besides the spherical shapes, we can create disks, rods, and bowl shaped stomatocytes by varying the ratio of the solvent. This regulates the and permeability of the vesicles, controlling their deflation and subsequent re-inflation," Rikken explains.

For the first time, the shape of the nanovesicles is now fully controllable and predictable. This offers possibilities to transform and mould the vesicles into nanocontainers or nanorockets, which are highly desirable, e.g. for in the body. The shape of the polymersomes also affects their flow properties, as is also believed to be the case for . It is therefore of great importance to obtain full control over shape transformations to utilise vesicles in drug transport via the blood stream.

By using the magnets of the High Field Magnet Laboratory, Rikken was able to determine the exact shape of the vesicles at every solvent ratio. Subsequently, he studied the variety of shapes with electron microscopy and described them mathematically. In this way, he discovered that the shape transformation follows the path of the lowest energy. "Nature is always trying to stay in balance. The four shapes that we found turn out to be located exactly at the energy minima in an existing model. The basic idea behind our discovery is actually very logical, but it was never described before."

Explore further: Magnetic field opens and closes nanovesicle

More information: R. S. M. Rikken et al. Shaping polymersomes into predictable morphologies via out-of-equilibrium self-assembly, Nature Communications (2016). DOI: 10.1038/ncomms12606

Related Stories

Magnetic field opens and closes nanovesicle

September 24, 2014

Chemists and physicists of Radboud University managed to open and close nanovesicles using a magnet. This process is repeatable and can be controlled remotely, allowing targeted drug transport in the body, for example.

Cylindrical nanoparticles more deadly to breast cancer

December 3, 2013

( —Cylindrical shaped nanoparticles are seven times more deadly than traditional spherical ones when delivering drugs to breast cancer cells, an international team of researchers has discovered.

For cells, some shapes are easier to swallow than others

May 18, 2016

Scientists have probed the process that allows cells to swallow up particles, finding that some shapes are easier to swallow than others. Cells take in small particles and other objects such as bacteria in a process called ...

Recommended for you

Weaponizing oxygen to kill infections and disease

August 19, 2018

The life-threatening bacteria called MRSA can cripple a hospital since it spreads quickly and is resistant to treatment. But scientists report that they are now making advances in a new technique that avoids antibiotics. ...

Flexible color displays with microfluidics

August 16, 2018

A new study published on Microsystems and Nanoengineering by Kazuhiro Kobayashi and Hiroaki Onoe details the development of a flexible and reflective multicolor display system that does not require continued energy supply ...

Twisted electronics open the door to tunable 2-D materials

August 16, 2018

Two-dimensional (2-D) materials such as graphene have unique electronic, magnetic, optical, and mechanical properties that promise to drive innovation in areas from electronics to energy to materials to medicine. Columbia ...

Scientists discover why silver clusters emit light

August 16, 2018

Clusters of silver atoms captured in zeolites, a porous material with small channels and voids, have remarkable light-emitting properties. They can be used for more efficient lighting applications as a substitute for LED ...

Novel sensors could enable smarter textiles

August 16, 2018

A team of engineers at the University of Delaware is developing next-generation smart textiles by creating flexible carbon nanotube composite coatings on a wide range of fibers, including cotton, nylon and wool. Their discovery ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.