Learning from the mussel, scientists create a biologically active titanium surface

July 8, 2016, RIKEN

Titanium is used medically in applications such as artificial joints and dental implants. While it is strong and is not harmful to tissues, the metal lacks some of the beneficial biological properties of natural tissues such as bones and natural teeth. Now, based on insights from mussels—which are able to attach themselves very tightly to even metallic surfaces due to special proteins found in their byssal threads—scientists from RIKEN have successfully attached a biologically active molecule to a titanium surface, paving the way for implants that can be more biologically beneficial.

The work began from earlier discoveries that mussels can attach to smooth surfaces so effectively thanks to a protein, L-DOPA, which is known to be able to bind very strongly to smooth surfaces such as rocks, ceramics, or metals. Interestingly, the same protein functions in humans as a precursor to dopamine, and is used as a treatment for Parkinson's disease.

According to Chen Zhang of the RIKEN Nano Medical Engineering Laboratory, the first author of the paper published in Angewandte Chemie, "We thought it would be interesting to try to use various techniques to attach a biologically active protein—in our case we chose insulin-like growth factor-1, a promoter of cell proliferation—to a titanium surface like those used in implants".

Using a combination of recombinant DNA technology and treatment with tyrosinase, they were able to create a hybrid protein that contained active parts of both the growth factor and L-DOPA. Tests showed that the proteins were able to fold normally, and further experiments in cell cultures demonstrated that the IGF-1 was still functioning normally. Thanks to the incorporation of the L-DOPA, the team was able to confirm that the proteins bound strongly to the titanium surface, and remained attached even when the metal was washed with phosphate-buffered saline, a water-based solution. Zhang says, "This is similar to the powerful properties of mussel adhesive, which can remain fixed to metallic materials even underwater."

According to Yoshihiro Ito, Team Leader of the Emergent Bioengineering Research Team of the RIKEN Center for Emergent Matter Science, "We are very excited by this finding, because the modification process is a universal one that could be used with other proteins. It could allow us to prepare new cell-growth enhancing materials, with potential applications in cell culture systems and regenerative medicine. And it is particularly interesting that this is an example of biomimetics, where nature can teach us new ways to do things. The mussel has given us insights that could be used to allow us to live healthier lives."

Explore further: Incorporation of DOPA into engineered mussel glue proteins

More information: Chen Zhang et al. A Bioorthogonal Approach for the Preparation of a Titanium-Binding Insulin-like Growth-Factor-1 Derivative by using Tyrosinase, Angewandte Chemie International Edition (2016). DOI: 10.1002/anie.201603155

Related Stories

Incorporation of DOPA into engineered mussel glue proteins

September 18, 2014

Mussels can do it, but we haven't been able to: gluing under water. In the journal Angewandte Chemie, a team consisting of Korean, Indian, and Canadian scientists has now introduced a new method that makes it possible to ...

Engineering the world's smallest nanocrystal

July 6, 2015

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way proteins actually ...

Acid attack—can mussels hang on for much longer?

July 5, 2016

Scientists from The University of Washington have found evidence that ocean acidification caused by carbon emissions can prevent mussels attaching themselves to rocks and other substrates, making them easy targets for predators ...

Engineered proteins stick like glue—even in water

September 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed new materials that ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.