How water gets its exceptional properties

July 5, 2016, University of Vienna
Icebergs float because water has its highest density at four degrees Celsius – actually quite unusual. Credit: Michael Haferkamp

Water is liquid at room temperature – astounding for such a small molecule. Insights into the causes are provided by a new simulation method, which has its origins in brain research. Using artificial neural networks, researchers in Bochum and Vienna have examined the atomic interactions of water molecules. Based on their findings, they explain the melting temperature of ice and the density maximum at four degrees Celsius – based solely on computer simulations. The newly developed method is just as precise as quantum mechanical calculations, but is 100.000 times faster.

The teams of Jörg Behler of the Ruhr-Universität Bochum and Christoph Dellago of the University of Vienna describe the work in the journal Proceedings of the National Academy of Sciences (PNAS).

Water has a number of properties that cannot be understood solely on the basis of its chemical composition. It reaches its maximum density at four degrees Celsius, so that ice floats on liquid water. It is also unusual that such a small molecule is liquid at and not gaseous. An important role in these phenomena is played by hydrogen bonds.

The analyses showed that van der Waals interactions are decisive for the geometry and flexibility of these . In this way they determine the characteristics of water, although they exert only very weak forces, weaker, for example, than electrostatic interactions.

Method from brain research

Jörg Behler developed the method based on an approach that originally had been devised for . The learn the forces between the individual atoms as a function of their geometric arrangement. "We can thus carry out computer simulations that would not be possible with conventional quantum mechanical methods, because the computational effort would be too high even for a supercomputer", says the Head of an Independent Junior Research Group at the Bochum Chair for Theoretical Chemistry.

Tobias Morawietz applied the method for the first time in his doctoral work to examine the characteristics of water. The simulations were done in the context of Bochum's Cluster of Excellence Resolv, in close collaboration with Andreas Singraber in the group of Christoph Dellago at the University of Vienna. Tobias Morawietz also did some of his simulations there; today he is continuing his research in Vienna as a post-doctoral researcher.

Explore further: New insights into the supercritical state of water

More information: Tobias Morawietz, Andreas Singraber, Christoph Dellago, Jörg Behler: How van der Waals interactions determine the unique properties of water, in: PNAS, 2016
DOI: 10.1073/pnas.1602375113 , On Arxiv: https://arxiv.org/abs/1606.07775

Related Stories

New insights into the supercritical state of water

January 21, 2016

Using molecular dynamics simulations, researchers have analysed the properties of supercritical water. The researchers showed which structure of the hydrogen bond network is formed in different supercritical states and also ...

Competing coexisting phases in two-dimensional water

June 17, 2016

On Earth, water is abundant substance, the cycle of evaporation - condensation - solidification (steam transitions - liquid - solid) falls within everyday experience. The physical properties of water and its phase diagram ...

Towards eco-friendly industrial-scale hydrogen production

June 13, 2016

What if industrial waste water could become fuel? With affordable, long-lasting catalysts, water could be split to produce hydrogen that could be used to power fuel cells or combustion engines. By conducting complex simulations, ...

Ice-like phonons in liquid water discovered

January 20, 2016

For more than 100 years, scientists have debated what the underlying molecular structure of water is, and the common view has been that H2O molecules are either "water-like" or "ice-like." Now through computer simulation ...

Recommended for you

Reaching new heights in laser-accelerated ion energy

February 20, 2018

A laser-driven ion acceleration scheme, developed in research led at the University of Strathclyde, could lead to compact ion sources for established and innovative applications in science, medicine and industry.

MEMS chips get metatlenses

February 20, 2018

Lens technologies have advanced across all scales, from digital cameras and high bandwidth in fiber optics to the LIGO lab instruments. Now, a new lens technology that could be produced using standard computer-chip technology ...

Using organoids to understand how the brain wrinkles

February 20, 2018

A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.