Monitoring cell fates

July 27, 2016 by Isabelle Fol, ETH Zurich
Blood stem cells in the bone marrow give rise to both red and white blood cells. Credit: Colourbox/ETH Zurich

An international team of researchers led by ETH scientists has been studying the factors influencing the development of different blood cells. Their research shows that certain molecular mechanisms are not as relevant as previously assumed. This finding helps to improve our understanding of diseases such as leukemia and anemia.

In biological terms, a cell is the smallest functional entity of living organisms. The human body contains an enormous number of cells: somewhere in the region of 10 to 100 trillion, depending on a person's size and weight. Most of these cells perform specific functions in the body and are called differentiated cells. Stem cells, on the other hand, are able to continuously divide to produce more and differentiated cells, thereby providing an endless supply of . Certain cells in the body have a relatively short life span. For example, many white blood cells (leucocytes) and (thrombocytes) die within a few hours to a couple of days, while red blood cells (erythrocytes) survive around four months.

Stem cell regeneration

Stem cells in the bone marrow thus produce millions of new blood cells every second. These stem cells are multipotent, which means they can generate all types of specialised blood cell with different functions: , responsible for oxygen transport, that are part of the body's immune defence system, and blood platelets which play a key role in blood-clotting. Exactly how stem cells develop into different cell types is still only partly understood. The process of differentiation - in other words, the decision as to which type of cell will be produced - depends on a number of different external and internal factors.

Timm Schroeder, Professor at the ETH Zurich Department of Biosystems Science and Engineering based in Basel, and his colleagues are studying the factors that play a role in the development of the individual blood cells. "The regulation of plays a vital role in maintining the normal process of blood formation", explains Professor Schroeder. "If this system starts to malfunction, it can lead to life-threatening diseases such as anaemia and leukaemia. We therefore need to have a better understanding of the molecular mechanism involved in this regulation."

Observation at the molecular level

The cell biologist and his team are analysing how stem cells differentiate into the different types of blood cell and how molecules in the cell nucleus (transcription factors) control this complex process. Working with the Helmholtz Zentrum Munich (German Research Centre for Environmental Health), they have developed an innovative microscopy technique for observing cells - cutting-edge equipment that is only found in very few of the world's stem cell research laboratories.

The two proteins GATA1 and PU.1 have been a particular focus of the researcher's attention. They play an important role in the differentiation of blood cells, explains Timm Schroeder. "They are transcription factors capable of activating or disabling comprehensive genetic programs with many target genes. This makes them powerful regulators of cell fates."

Promising potential

Using time-lapse microscopy, the researchers could observe living with unprecedented precision as they differentiated, while also quantifying the two proteins GATA1 and PU.1. "For decades it was thought that these two were responsible for making the lineage decisions for stem . Now we are able to show that this is not the case, but that other mechanisms must be responsible for these decisions", explains Professor Schroeder. Research now needs to concentrate on other molecular mechanisms in order to understand the extremely complex process of blood stem cell differentiation.

Blood diseases such as leukaemia are severe disorders of the blood system. To improve our understanding of such diseases in future and to come up with effective treatments, we need to know exactly how the individual are created. A foundation stone for this research has now been laid at ETH Zurich.

Explore further: Blood stem cells study could pave the way for new cancer therapy

More information: Philipp S. Hoppe et al, Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios, Nature (2016). DOI: 10.1038/nature18320

Related Stories

A new tracking and quantification tool for single cells

July 19, 2016

Working with colleagues from the ETH Zürich, scientists at the Helmholtz Zentrum München and the Technical University of Munich have developed software that allows observing cells for weeks while also measuring molecular ...

Blocking differentiation is enough to give cells 'stemness'

October 22, 2015

Though immune therapy and regenerative medicine are promising areas of research for future medical therapies, they are limited today by the difficulty of creating stem cells, and scientists around the world are searching ...

Immune cells regulate blood stem cells

February 21, 2014

Researchers in Bern, Germany, have discovered that, during a viral infection, immune cells control the blood stem cells in the bone marrow and therefore also the body's own defences. The findings could allow for new forms ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gkam
1 / 5 (3) Jul 27, 2016
I hope they find a better way to test for leukemia. Getting your bone marrow sucked out of your sternum is a real trip, and one not advised.
gkam
1 / 5 (3) Jul 27, 2016
"My last pay check was $9500 working 12 hours a week"
--------------------------

Yeah, but prostitution is against the law.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.