Scientists seek new physics using ORNL's intense neutrino source

June 17, 2016, Oak Ridge National Laboratory
The High Flux Isotope Reactor, a Department of Energy Office of Science User Facility that creates continuous neutron beams, is the site of a new neutrino experiment. Yale-led PROSPECT will probe neutrinos formed as a byproduct of radioactive decay processes. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Genevieve Martin

Soon to be deployed at the Department of Energy's Oak Ridge National Laboratory is an experiment to explore new physics associated with neutrinos. The Precision Oscillation and Spectrum Experiment, or PROSPECT, is led by Yale University and includes partners from 14 academic and governmental institutions. The DOE High Energy Physics program will support the experiment at the High Flux Isotope Reactor (HFIR), a DOE Office of Science User Facility at ORNL. The neutrino, the subject of a 2015 Nobel Prize, remains a poorly understood fundamental particle of the Standard Model of particle physics.

These electrically neutral subatomic particles are made in stars and nuclear reactors as a byproduct of radioactive decay processes. They interact with other matter via the weak force, making their detection difficult. As a result of this elusiveness, neutrinos are the subject of many interesting and challenging detection experiments, including PROSPECT.

"Unique capabilities of ORNL will enable us to broaden the understanding of neutrino properties," said David Dean, director of ORNL's Physics Division. "The expansion of at Oak Ridge National Laboratory is a win for the lab because we have a new scientific focus area, and a win for the scientific community because ORNL has unique neutrino sources that physicists will utilize to explore neutrino science."

It turns out that the two DOE Office of Science User Facilities for neutron scattering also produce, in addition to neutrons, a copious supply of neutrinos as a byproduct. These two sources are the Spallation Neutron Source, which delivers pulsed neutron beams, and HFIR, which provides continuous neutron beams. PROSPECT will be the first experiment at HFIR to detect neutrinos emitted from the reactor.

In development for more than 3 years, the PROSPECT experiment has 68 collaborators, including 14 from ORNL. Scientists will extract information about neutrino oscillations—transmutations of electron neutrino, muon neutrino and tau neutrino "flavors" from one to another. Specifically, they want to find out if neutrino oscillations occur over short distances (less than 65 feet). Neutrino oscillations have not been observed at these distances. Observing at these distances, coupled with PROSPECT's other objectives of high-precision measurements of the neutrino flux and spectrum from HFIR, could reveal the existence of a fourth neutrino flavor that does not interact via the weak force, a "sterile neutrino." Seeing this new particle would necessitate revising the Standard Model, which describes elementary particles and the forces that govern them.

The process to select the location of PROSPECT was competitive; HFIR and other U.S. research reactor sites were assessed. "We have been working for over three years to ensure that the experiment is located at HFIR," said Chris Bryan, who manages experiments at HFIR for ORNL's Research Reactors Division. These efforts include installing a 30-ton detector system (with shielding) in an operating research reactor building as close as 21 feet to the reactor core without affecting HFIR's primary missions of neutron scattering research, isotope production and testing of irradiated materials. "We have been actively engaged with ORNL's Physics Division, the first line for data gathering as well as ongoing care of the neutrino detector at HFIR," he added.

The ORNL-site principal investigator for the project, physicist Alfredo Galindo-Uribarri, said reviewers determined HFIR was the best reactor for short-baseline physics. "As one of the best-studied reactors, its behavior is very well understood," he said. "The research reactor has the most compact core of any reactor and burns highly enriched uranium. The fission products decay to form neutrinos. Particles start out as electron and then change to muon and tau forms." Reactor neutrino detection at HFIR necessitates a detailed understanding of background radiation fields. Researchers at ORNL have been engaged in detailed measurements to understand the sources of background production at HFIR and demonstrate that reactor-produced neutron backgrounds can be suppressed with judiciously chosen shielding material.

Near the reactor, experimenters will place a 15-foot-high movable detector. They will fill it with 3 tons of liquid scintillator to detect the flash produced when a neutrino combines with a proton to form a positron (or anti-electron) and a neutron. A prototype detector has been built at ORNL for tests in preparation for the arrival of PROSPECT's detection instrument, now under construction at Yale. That instrument will be deployed at ORNL's famous research reactor before data collection begins next year.

Explore further: High Flux Isotope Reactor named Nuclear Historic Landmark

Related Stories

High Flux Isotope Reactor named Nuclear Historic Landmark

September 12, 2014

The High Flux Isotope Reactor, or HFIR, now in its 48th year of providing neutrons for research and isotope production at the Department of Energy's Oak Ridge National Laboratory, has been designated a Nuclear Historic Landmark ...

First evidence of 'ghost particles'

November 3, 2015

An international team of scientists at the MicroBooNE physics experiment in the US, including researchers from the University of Cambridge, detected their first neutrino candidates, which are also known as 'ghost particles'. ...

Particle physicists discuss JUNO neutrino experiment

January 28, 2015

The construction of the facilities for the JUNO neutrino experiment has been initiated with an official groundbreaking ceremony near the south Chinese city of Jiangmen. Involved in the Jiangmen Underground Neutrino Observatory ...

New results confirm standard neutrino theory

February 16, 2010

(PhysOrg.com) -- In its search for a better understanding of the mysterious neutrinos, a group of experimenters at DOE’s Fermi National Accelerator Laboratory has announced results that confirm the theory of neutrino oscillations ...

Recommended for you

When electric fields make spins swirl

November 14, 2018

We are reaching the limits of silicon capabilities in terms of data storage density and speed of memory devices. One of the potential next-generation data storage elements is the magnetic skyrmion. A team at the Center for ...

Structure of fossil-fuel source rocks is finally decoded

November 13, 2018

The fossil fuels that provide much of the world's energy orginate in a type of rock known as kerogen, and the potential for recovering these fuels depends crucially on the size and connectedness of the rocks' internal pore ...

6 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

ursiny33
not rated yet Jun 17, 2016
Neutrinos the alleged mass less and no charge particle, is like a photon its an equal charged quantum construction with out a dominant charge that why you can't measure one its an equal positive and negative charge in quantum charge mass
ursiny33
not rated yet Jun 17, 2016
Its charge is not zero its 1p +1n that's is 2
ursiny33
not rated yet Jun 17, 2016
On you quantum particle chart you have 3 categories of charged particles, the positive,negative and neutral, the neutral are balanced equal charged particles,magnetically, the positive category are a dominant positive with a minor negative , unbalanced magnetically, the negative category is a dominant negative with a minor positive ,unbalanced magnetically in quantum charge mass, they are unbalanced in a ratio of 66.666 to 33.333 percent in quantum charge mass
Da Schneib
not rated yet Jun 17, 2016
@gkam to whine about teh nucular experimenties in

3...
2...
1...
ursiny33
not rated yet Jun 17, 2016
Balanced quantum charge give the particle a wave function
Graeme
not rated yet Jun 18, 2016
It would be good to see how neutrino oscillations vary with intervening mass. Most experiments so far have involved neutrinos traveling through solid Earth or the Sun. Perhaps the results will vary with neutrinos traveling through air or vacuum.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.