The Main Injector Neutrino Oscillation Search experiment, or MINOS, explores the properties of muon neutrinos produced at Fermilab. When sending a beam of neutrinos 735 kilometers through the earth to a neutrino detector in the Soudan Underground Laboratory in Soudan, Minn., scientists find that a significant fraction of the muon neutrinos disappears along the journey. The standard explanation is that the missing muon neutrinos morph into two other known types of neutrinos: electron neutrinos and tau neutrinos. This process is known as neutrino oscillations or neutrino mixing.
But could there be another explanation? Scientists are exploring alternatives such as the decay of muon neutrinos into yet-to-be discovered particles or the transformation of muon neutrinos into a fourth type of neutrino, which is often called a sterile neutrino since it would not interact with ordinary matter like the other three known types of neutrinos.
MINOS scientists found that neutrino decay is an unlikely option. They looked at two scenarios: First, the possibility that no neutrino oscillations take place and hence all muon neutrinos decay. Second, they considered the possibility that some muon neutrinos transform into other neutrinos and some decay during their trip from Fermilab to Soudan, which takes about four hundredths of a second. In both analyses, the MINOS results provide strong evidence against the existence of neutrino decay.
The MINOS results also disfavor the existence of a fourth, sterile neutrino. Past analyses have shown that if muon neutrinos are oscillating into sterile neutrinos, only 68 percent of the disappearing neutrinos can do so. The new MINOS analysis shrinks that percentage to 50 percent, and future MINOS data are expected to reduce it further.
The MINOS collaboration submitted its results to Physical Review D.
Explore further:
CERN neutrino project on target
More information:
www-numi.fnal.gov/PublicInfo/index.html
seneca
http://arxiv.org/abs/0906.5072
mrlewish
mtsher
daywalk3r
When something has energy, then it should have mass.. or at least a "mass-potential". And it should only depend on the state/form (structure/construct?) of that energy in regard to wether it exhibits a "mass-effect" or not. (E=mc^2)
And maybe that's exactly what's happening here with the neutrinos - continuous oscilations between energy and mass states(?)
Just a thought.. I'm no expert, so please don't eat me :D
seneca
http://www.youtub...wZ39EDmw
Muon neutrino was found in 1962 in Brookhaven lab, but so far there is no conclusive evidence that even the muon neutrino is stable. There are some indicia, muon neutrino is just faster, more energetic version of normal neutrino, so your idea could be valid.
daywalk3r
seneca