Random matrix theory approaches the mystery of the neutrino mass

When any matter is divided into smaller and smaller pieces, eventually all you are left with—when it cannot be divided any further—is a particle. Currently, there are 12 different known elementary particles, which in ...

Attempting to catch dark matter in a basement

Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the universe.

Team first to detect neutrinos made by a particle collider

In a scientific first, a team led by physicists at the University of California, Irvine has detected neutrinos created by a particle collider. The discovery promises to deepen scientists' understanding of the subatomic particles, ...

'Ghostly' neutrinos provide new path to study protons

Neutrinos are one of the most abundant particles in our universe, but they are notoriously difficult to detect and study: they don't have an electrical charge and have nearly no mass. They are often referred to as "ghost ...

When black holes collide they also produce neutrinos

Ever since astronomers first detected ultra high energy neutrinos coming from random directions in space, they have not been able to figure out what generates them. But a new hypothesis suggests an unlikely source: the mergers ...

New analysis takes a closer look at the sterile neutrino

A new result from the MicroBooNE experiment at the U.S. Department of Energy's Fermi National Accelerator Laboratory probes the Standard Model—scientists' best theory of how the universe works. The model assumes there are ...

page 1 from 40


A neutrino (English pronunciation: /njuːˈtriːnoʊ/, Italian pronunciation: [neuˈtriːno]) is an electrically neutral, weakly interacting elementary subatomic particle with a half-integer spin, chirality and a disputed but small non-zero mass. It is able to pass through ordinary matter almost unaffected. The neutrino (meaning "small neutral one" in Italian) is denoted by the Greek letter ν (nu).

Neutrinos do not carry electric charge, which means that they are not affected by the electromagnetic forces that act on charged particles such as electrons and protons. Neutrinos are affected only by the weak sub-atomic force, of much shorter range than electromagnetism, and gravity, which is relatively weak on the subatomic scale, and are therefore able to travel great distances through matter without being affected by it.

Neutrinos are created as a result of certain types of radioactive decay, or nuclear reactions such as those that take place in the Sun, in nuclear reactors, or when cosmic rays hit atoms. There are three types, or "flavors", of neutrinos: electron neutrinos, muon neutrinos and tau neutrinos. Each type also has a corresponding antiparticle, called an antineutrino with an opposite chirality.

Most neutrinos passing through the Earth emanate from the Sun. About 65 billion (6.5×1010) solar neutrinos per second pass through every square centimeter perpendicular to the direction of the Sun in the region of the Earth.

In September 2011, neutrinos apparently moving faster than light were detected (see OPERA neutrino anomaly). Since then the experiment has undergone extensive critique and efforts to replicate the results because confirming the results would change our understanding of the theory of relativity. (See Speed below)

This text uses material from Wikipedia, licensed under CC BY-SA