Upgrade of a research IceCube

The IceCube Neutrino Observatory in Antarctica is about to get a significant upgrade. This huge detector consists of 5,160 sensors embedded in a 1x1x1 km volume of glacial ice deep beneath the geographic South Pole. The purpose ...

Waiting for neutrinos

On Feb. 24, 1987, light from a supernova that exploded 168,000 years ago in the Large Magellanic Cloud, a neighbor of the Milky Way, reached Earth. Astronomers Ian Shelton and Oscar Duhalde at the Las Campanas Observatory ...

Neutrinos seen in the clustering of galaxies

In early times, the universe was an energetic mix of strongly interacting particles. The first particles to break free from this dense soup were neutrinos, the lightest and most weakly interacting particles of the Standard ...

Arapuca device for international neutrino experiment is enhanced

A critical part of one of the largest recent particle physics experiments was developed in Brazil. The Arapuca is a light detector to be installed in the Deep Underground Neutrino Experiment (DUNE), a project seeking to discover ...

Study of the universe could help improve global security

A major research project between the UK and US to harness existing particle physics research techniques in order to remotely monitor nuclear reactors has been launched with the help of scientists at the University of Sheffield.

page 1 from 23

Neutrino

A neutrino (English pronunciation: /njuːˈtriːnoʊ/, Italian pronunciation: [neuˈtriːno]) is an electrically neutral, weakly interacting elementary subatomic particle with a half-integer spin, chirality and a disputed but small non-zero mass. It is able to pass through ordinary matter almost unaffected. The neutrino (meaning "small neutral one" in Italian) is denoted by the Greek letter ν (nu).

Neutrinos do not carry electric charge, which means that they are not affected by the electromagnetic forces that act on charged particles such as electrons and protons. Neutrinos are affected only by the weak sub-atomic force, of much shorter range than electromagnetism, and gravity, which is relatively weak on the subatomic scale, and are therefore able to travel great distances through matter without being affected by it.

Neutrinos are created as a result of certain types of radioactive decay, or nuclear reactions such as those that take place in the Sun, in nuclear reactors, or when cosmic rays hit atoms. There are three types, or "flavors", of neutrinos: electron neutrinos, muon neutrinos and tau neutrinos. Each type also has a corresponding antiparticle, called an antineutrino with an opposite chirality.

Most neutrinos passing through the Earth emanate from the Sun. About 65 billion (6.5×1010) solar neutrinos per second pass through every square centimeter perpendicular to the direction of the Sun in the region of the Earth.

In September 2011, neutrinos apparently moving faster than light were detected (see OPERA neutrino anomaly). Since then the experiment has undergone extensive critique and efforts to replicate the results because confirming the results would change our understanding of the theory of relativity. (See Speed below)

This text uses material from Wikipedia, licensed under CC BY-SA