Resistance to antibiotics and to immune system are interconnected in bacteria

June 30, 2016, Instituto Gulbenkian de Ciencia
E. coli bacterium visualized by electron microscopy. Credit: Electron Microscopy Unit, IGC.

Antibiotics and the immune system are the two forces that cope with bacterial infections. Now, two studies from Isabel Gordo's laboratory, at Instituto Gulbenkian de Ciência (IGC, Portugal), show for the first time that resistance to antibiotics and to the immune system is interconnected in bacteria. The researchers further discovered that bacteria adaptation to the immune system influences the spectrum of antibiotic resistance and, as a side effect, bacteria become more resistant to some antibiotics, but also more sensitive to other classes of antibiotics. These results were now published in the scientific journals Antimicrobial Agents and Chemotherapy and Evolutionary Applications.

Bacterial infection requires an effective answer from the . Macrophages are the immune cells that first respond to bacterial infection, by recognizing, engulfing and killing microorganisms. Paulo Durão and colleagues, at Isabel Gordo's laboratory, investigated the ability of bacteria that are resistant to several antibiotics to survive in the presence of macrophages. For this study, they used Escherichia coli bacteria with mutations that confer resistance to two antibiotics, rifampin and streptomycin, which are common in pathogenic bacteria. The researchers observed that these bacteria could survive better inside macrophages than non-resistant bacteria. Paulo Durão: "In our experiments there are no antibiotics present and still, in the harsh environment found inside macrophages, the E. coli strains which have antibiotic resistance seem to be fitter than the susceptible strain. This means that antibiotic treatment selects for and simultaneously selects for a higher resistance to the innate immune system."

At the same time, other team members of Gordo's Laboratory investigated the other side of the question: what happens when bacteria become resistant to the immune system? Ricardo Ramiro, first author of this study, conducted a series of experiments, forcing bacteria to evolve in the presence of macrophages. This resulted in bacteria capable of surviving better inside macrophages. Ramiro and colleagues discovered that these bacteria, initially without any resistance to antibiotics, became more resistant to a specific class of antibiotics, the aminoglycosides, and more sensitive to other classes of antibiotics.

"This side effect of bacterial adaptation to the immune system could be used in our favor to better select antibiotics for treatment of infections", says Ricardo Ramiro. "While adapting to the immune system, bacteria become more sensitive to some antibiotic classes. Thus, using those antibiotic classes for treatment of infections, should allow for a faster cure of the infection while minimizing the emergence of antibiotic resistant bacteria."

Isabel Gordo adds: "Our results with E. coli set the ground for future experiments in other important bacterial species, such as M. tuberculosis and Salmonella."

Bacterial resistance to antibiotics has been increasing, posing a serious threat to human health. Understanding the relation between , immune system and can open new avenues to cope with such public health problem.

Explore further: Second US patient identified with super-resistant bacteria

More information: Ricardo S. Ramiro et al, Macrophage adaptation leads to parallel evolution of genetically diversesmall-colony variants with increased fitness in vivo and antibiotic collateral sensitivity, Evolutionary Applications (2016). DOI: 10.1111/eva.12397

Paulo Durão et al. Enhanced Survival of Rifampin- and Streptomycin-Resistant Escherichia coli Inside Macrophages, Antimicrobial Agents and Chemotherapy (2016). DOI: 10.1128/AAC.00624-16

Related Stories

Researchers work on rebooting antibiotics

June 8, 2016

With the recent finding in Pennsylvania of a hospital patient with an E.coli infection that resists colistin, an antibiotic used as the last line of defense against multi-drug resistant bacteria, the scientific and medical ...

Recommended for you

Photosynthesis discovery could help next-gen biotechnologies

September 24, 2018

Researchers from The University of Queensland (UQ) and the University of Münster (WWU) have purified and visualized the 'Cyclic Electron Flow' (CEF) supercomplex, a critical part of the photosynthetic machinery in all plants, ...

How fruits got their eye-catching colors

September 24, 2018

Red plums. Green melons. Purple figs. Ripe fruits come in an array of greens, yellows, oranges, browns, reds and purples. Scientists say they have new evidence that plants owe their rainbow of fruit colors to the different ...

Some female termites can reproduce without males

September 24, 2018

Populations of the termite species Glyptotermes nakajimai can form successful, reproducing colonies in absence of males, according to a study published in the open access journal BMC Biology.

Common weed killer linked to bee deaths

September 24, 2018

The world's most widely used weed killer may also be indirectly killing bees. New research from The University of Texas at Austin shows that honey bees exposed to glyphosate, the active ingredient in Roundup, lose some of ...

Birds' voiceboxes are odd ducks

September 24, 2018

Birds sing from the heart. While other four-limbed animals like mammals and reptiles make sounds with voiceboxes in their throats, birds' chirps originate in a unique vocal organ called the syrinx, located in their chests. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.